src/HOL/Integration.thy
changeset 31336 e17f13cd1280
parent 31259 c1b981b71dba
child 31338 d41a8ba25b67
equal deleted inserted replaced
31293:198eae6f5a35 31336:e17f13cd1280
   428 done
   428 done
   429 
   429 
   430 lemma Cauchy_iff2:
   430 lemma Cauchy_iff2:
   431      "Cauchy X =
   431      "Cauchy X =
   432       (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. \<bar>X m - X n\<bar> < inverse(real (Suc j))))"
   432       (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. \<bar>X m - X n\<bar> < inverse(real (Suc j))))"
   433 apply (simp add: Cauchy_def, auto)
   433 apply (simp add: Cauchy_iff, auto)
   434 apply (drule reals_Archimedean, safe)
   434 apply (drule reals_Archimedean, safe)
   435 apply (drule_tac x = n in spec, auto)
   435 apply (drule_tac x = n in spec, auto)
   436 apply (rule_tac x = M in exI, auto)
   436 apply (rule_tac x = M in exI, auto)
   437 apply (drule_tac x = m in spec, simp)
   437 apply (drule_tac x = m in spec, simp)
   438 apply (drule_tac x = na in spec, auto)
   438 apply (drule_tac x = na in spec, auto)