src/HOL/Lifting_Sum.thy
changeset 53026 e1a548c11845
parent 53012 cb82606b8215
child 55083 0a689157e3ce
equal deleted inserted replaced
53025:c820c9e9e8f4 53026:e1a548c11845
     3 *)
     3 *)
     4 
     4 
     5 header {* Setup for Lifting/Transfer for the sum type *}
     5 header {* Setup for Lifting/Transfer for the sum type *}
     6 
     6 
     7 theory Lifting_Sum
     7 theory Lifting_Sum
     8 imports Lifting FunDef
     8 imports Lifting
     9 begin
     9 begin
    10 
    10 
    11 subsection {* Relator and predicator properties *}
    11 subsection {* Relator and predicator properties *}
    12 
    12 
    13 fun
    13 definition
    14   sum_rel :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd \<Rightarrow> bool"
    14    sum_rel :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd \<Rightarrow> bool"
    15 where
    15 where
       
    16    "sum_rel R1 R2 x y =
       
    17      (case (x, y) of (Inl x, Inl y) \<Rightarrow> R1 x y
       
    18      | (Inr x, Inr y) \<Rightarrow> R2 x y
       
    19      | _ \<Rightarrow> False)"
       
    20 
       
    21 lemma sum_rel_simps[simp]:
    16   "sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
    22   "sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
    17 | "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
    23   "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
    18 | "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
    24   "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
    19 | "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
    25   "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
       
    26   unfolding sum_rel_def by simp_all
    20 
    27 
    21 lemma sum_rel_unfold:
    28 abbreviation (input) "sum_pred \<equiv> sum_case"
    22   "sum_rel R1 R2 x y = (case (x, y) of (Inl x, Inl y) \<Rightarrow> R1 x y
       
    23     | (Inr x, Inr y) \<Rightarrow> R2 x y
       
    24     | _ \<Rightarrow> False)"
       
    25   by (cases x) (cases y, simp_all)+
       
    26 
       
    27 fun sum_pred :: "('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'a + 'b \<Rightarrow> bool"
       
    28 where
       
    29   "sum_pred P1 P2 (Inl a) = P1 a"
       
    30 | "sum_pred P1 P2 (Inr a) = P2 a"
       
    31 
       
    32 lemma sum_pred_unfold:
       
    33   "sum_pred P1 P2 x = (case x of Inl x \<Rightarrow> P1 x
       
    34     | Inr x \<Rightarrow> P2 x)"
       
    35 by (cases x) simp_all
       
    36 
    29 
    37 lemma sum_rel_eq [relator_eq]:
    30 lemma sum_rel_eq [relator_eq]:
    38   "sum_rel (op =) (op =) = (op =)"
    31   "sum_rel (op =) (op =) = (op =)"
    39   by (simp add: sum_rel_unfold fun_eq_iff split: sum.split)
    32   by (simp add: sum_rel_def fun_eq_iff split: sum.split)
    40 
    33 
    41 lemma sum_rel_mono[relator_mono]:
    34 lemma sum_rel_mono[relator_mono]:
    42   assumes "A \<le> C"
    35   assumes "A \<le> C"
    43   assumes "B \<le> D"
    36   assumes "B \<le> D"
    44   shows "(sum_rel A B) \<le> (sum_rel C D)"
    37   shows "(sum_rel A B) \<le> (sum_rel C D)"
    45 using assms by (auto simp: sum_rel_unfold split: sum.splits)
    38 using assms by (auto simp: sum_rel_def split: sum.splits)
    46 
    39 
    47 lemma sum_rel_OO[relator_distr]:
    40 lemma sum_rel_OO[relator_distr]:
    48   "(sum_rel A B) OO (sum_rel C D) = sum_rel (A OO C) (B OO D)"
    41   "(sum_rel A B) OO (sum_rel C D) = sum_rel (A OO C) (B OO D)"
    49 by (rule ext)+ (auto simp add: sum_rel_unfold OO_def split_sum_ex split: sum.split)
    42 by (rule ext)+ (auto simp add: sum_rel_def OO_def split_sum_ex split: sum.split)
    50 
    43 
    51 lemma Domainp_sum[relator_domain]:
    44 lemma Domainp_sum[relator_domain]:
    52   assumes "Domainp R1 = P1"
    45   assumes "Domainp R1 = P1"
    53   assumes "Domainp R2 = P2"
    46   assumes "Domainp R2 = P2"
    54   shows "Domainp (sum_rel R1 R2) = (sum_pred P1 P2)"
    47   shows "Domainp (sum_rel R1 R2) = (sum_pred P1 P2)"
    55 using assms
    48 using assms
    56 by (auto simp add: Domainp_iff split_sum_ex sum_pred_unfold iff: fun_eq_iff split: sum.split)
    49 by (auto simp add: Domainp_iff split_sum_ex iff: fun_eq_iff split: sum.split)
    57 
    50 
    58 lemma reflp_sum_rel[reflexivity_rule]:
    51 lemma reflp_sum_rel[reflexivity_rule]:
    59   "reflp R1 \<Longrightarrow> reflp R2 \<Longrightarrow> reflp (sum_rel R1 R2)"
    52   "reflp R1 \<Longrightarrow> reflp R2 \<Longrightarrow> reflp (sum_rel R1 R2)"
    60   unfolding reflp_def split_sum_all sum_rel.simps by fast
    53   unfolding reflp_def split_sum_all sum_rel_simps by fast
    61 
    54 
    62 lemma left_total_sum_rel[reflexivity_rule]:
    55 lemma left_total_sum_rel[reflexivity_rule]:
    63   "left_total R1 \<Longrightarrow> left_total R2 \<Longrightarrow> left_total (sum_rel R1 R2)"
    56   "left_total R1 \<Longrightarrow> left_total R2 \<Longrightarrow> left_total (sum_rel R1 R2)"
    64   using assms unfolding left_total_def split_sum_all split_sum_ex by simp
    57   using assms unfolding left_total_def split_sum_all split_sum_ex by simp
    65 
    58 
    83   "bi_unique R1 \<Longrightarrow> bi_unique R2 \<Longrightarrow> bi_unique (sum_rel R1 R2)"
    76   "bi_unique R1 \<Longrightarrow> bi_unique R2 \<Longrightarrow> bi_unique (sum_rel R1 R2)"
    84   using assms unfolding bi_unique_def split_sum_all by simp
    77   using assms unfolding bi_unique_def split_sum_all by simp
    85 
    78 
    86 lemma sum_invariant_commute [invariant_commute]: 
    79 lemma sum_invariant_commute [invariant_commute]: 
    87   "sum_rel (Lifting.invariant P1) (Lifting.invariant P2) = Lifting.invariant (sum_pred P1 P2)"
    80   "sum_rel (Lifting.invariant P1) (Lifting.invariant P2) = Lifting.invariant (sum_pred P1 P2)"
    88   by (auto simp add: fun_eq_iff Lifting.invariant_def sum_rel_unfold sum_pred_unfold split: sum.split)
    81   by (auto simp add: fun_eq_iff Lifting.invariant_def sum_rel_def split: sum.split)
    89 
    82 
    90 subsection {* Quotient theorem for the Lifting package *}
    83 subsection {* Quotient theorem for the Lifting package *}
    91 
    84 
    92 lemma Quotient_sum[quot_map]:
    85 lemma Quotient_sum[quot_map]:
    93   assumes "Quotient R1 Abs1 Rep1 T1"
    86   assumes "Quotient R1 Abs1 Rep1 T1"
   109 lemma Inr_transfer [transfer_rule]: "(B ===> sum_rel A B) Inr Inr"
   102 lemma Inr_transfer [transfer_rule]: "(B ===> sum_rel A B) Inr Inr"
   110   unfolding fun_rel_def by simp
   103   unfolding fun_rel_def by simp
   111 
   104 
   112 lemma sum_case_transfer [transfer_rule]:
   105 lemma sum_case_transfer [transfer_rule]:
   113   "((A ===> C) ===> (B ===> C) ===> sum_rel A B ===> C) sum_case sum_case"
   106   "((A ===> C) ===> (B ===> C) ===> sum_rel A B ===> C) sum_case sum_case"
   114   unfolding fun_rel_def sum_rel_unfold by (simp split: sum.split)
   107   unfolding fun_rel_def sum_rel_def by (simp split: sum.split)
   115 
   108 
   116 end
   109 end
   117 
   110 
   118 end
   111 end
   119 
   112