doc-src/AxClass/Group/document/Group.tex
changeset 30130 e23770bc97c8
parent 30129 419116f1157a
parent 30114 0726792e1726
child 30131 6be1be402ef0
equal deleted inserted replaced
30129:419116f1157a 30130:e23770bc97c8
     1 %
       
     2 \begin{isabellebody}%
       
     3 \def\isabellecontext{Group}%
       
     4 %
       
     5 \isamarkupheader{Basic group theory%
       
     6 }
       
     7 \isamarkuptrue%
       
     8 %
       
     9 \isadelimtheory
       
    10 %
       
    11 \endisadelimtheory
       
    12 %
       
    13 \isatagtheory
       
    14 \isacommand{theory}\isamarkupfalse%
       
    15 \ Group\ \isakeyword{imports}\ Main\ \isakeyword{begin}%
       
    16 \endisatagtheory
       
    17 {\isafoldtheory}%
       
    18 %
       
    19 \isadelimtheory
       
    20 %
       
    21 \endisadelimtheory
       
    22 %
       
    23 \begin{isamarkuptext}%
       
    24 \medskip\noindent The meta-level type system of Isabelle supports
       
    25   \emph{intersections} and \emph{inclusions} of type classes. These
       
    26   directly correspond to intersections and inclusions of type
       
    27   predicates in a purely set theoretic sense. This is sufficient as a
       
    28   means to describe simple hierarchies of structures.  As an
       
    29   illustration, we use the well-known example of semigroups, monoids,
       
    30   general groups and Abelian groups.%
       
    31 \end{isamarkuptext}%
       
    32 \isamarkuptrue%
       
    33 %
       
    34 \isamarkupsubsection{Monoids and Groups%
       
    35 }
       
    36 \isamarkuptrue%
       
    37 %
       
    38 \begin{isamarkuptext}%
       
    39 First we declare some polymorphic constants required later for the
       
    40   signature parts of our structures.%
       
    41 \end{isamarkuptext}%
       
    42 \isamarkuptrue%
       
    43 \isacommand{consts}\isamarkupfalse%
       
    44 \isanewline
       
    45 \ \ times\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequoteopen}{\isasymodot}{\isachardoublequoteclose}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
       
    46 \ \ invers\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ \ \ \ {\isacharparenleft}{\isachardoublequoteopen}{\isacharparenleft}{\isacharunderscore}{\isasyminv}{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbrackleft}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isacharparenright}\isanewline
       
    47 \ \ one\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ \ \ \ {\isacharparenleft}{\isachardoublequoteopen}{\isasymone}{\isachardoublequoteclose}{\isacharparenright}%
       
    48 \begin{isamarkuptext}%
       
    49 \noindent Next we define class \isa{monoid} of monoids with
       
    50   operations \isa{{\isasymodot}} and \isa{{\isasymone}}.  Note that multiple class
       
    51   axioms are allowed for user convenience --- they simply represent
       
    52   the conjunction of their respective universal closures.%
       
    53 \end{isamarkuptext}%
       
    54 \isamarkuptrue%
       
    55 \isacommand{axclass}\isamarkupfalse%
       
    56 \ monoid\ {\isasymsubseteq}\ type\isanewline
       
    57 \ \ assoc{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
    58 \ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequoteopen}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
       
    59 \ \ right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequoteclose}%
       
    60 \begin{isamarkuptext}%
       
    61 \noindent So class \isa{monoid} contains exactly those types
       
    62   \isa{{\isasymtau}} where \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} and \isa{{\isasymone}\ {\isasymColon}\ {\isasymtau}}
       
    63   are specified appropriately, such that \isa{{\isasymodot}} is associative and
       
    64   \isa{{\isasymone}} is a left and right unit element for the \isa{{\isasymodot}}
       
    65   operation.%
       
    66 \end{isamarkuptext}%
       
    67 \isamarkuptrue%
       
    68 %
       
    69 \begin{isamarkuptext}%
       
    70 \medskip Independently of \isa{monoid}, we now define a linear
       
    71   hierarchy of semigroups, general groups and Abelian groups.  Note
       
    72   that the names of class axioms are automatically qualified with each
       
    73   class name, so we may re-use common names such as \isa{assoc}.%
       
    74 \end{isamarkuptext}%
       
    75 \isamarkuptrue%
       
    76 \isacommand{axclass}\isamarkupfalse%
       
    77 \ semigroup\ {\isasymsubseteq}\ type\isanewline
       
    78 \ \ assoc{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
    79 \isanewline
       
    80 \isacommand{axclass}\isamarkupfalse%
       
    81 \ group\ {\isasymsubseteq}\ semigroup\isanewline
       
    82 \ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequoteopen}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
       
    83 \ \ left{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequoteopen}x{\isasyminv}\ {\isasymodot}\ x\ {\isacharequal}\ {\isasymone}{\isachardoublequoteclose}\isanewline
       
    84 \isanewline
       
    85 \isacommand{axclass}\isamarkupfalse%
       
    86 \ agroup\ {\isasymsubseteq}\ group\isanewline
       
    87 \ \ commute{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ y\ {\isacharequal}\ y\ {\isasymodot}\ x{\isachardoublequoteclose}%
       
    88 \begin{isamarkuptext}%
       
    89 \noindent Class \isa{group} inherits associativity of \isa{{\isasymodot}}
       
    90   from \isa{semigroup} and adds two further group axioms. Similarly,
       
    91   \isa{agroup} is defined as the subset of \isa{group} such that
       
    92   for all of its elements \isa{{\isasymtau}}, the operation \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is even commutative.%
       
    93 \end{isamarkuptext}%
       
    94 \isamarkuptrue%
       
    95 %
       
    96 \isamarkupsubsection{Abstract reasoning%
       
    97 }
       
    98 \isamarkuptrue%
       
    99 %
       
   100 \begin{isamarkuptext}%
       
   101 In a sense, axiomatic type classes may be viewed as \emph{abstract
       
   102   theories}.  Above class definitions gives rise to abstract axioms
       
   103   \isa{assoc}, \isa{left{\isacharunderscore}unit}, \isa{left{\isacharunderscore}inverse}, \isa{commute}, where any of these contain a type variable \isa{{\isacharprime}a\ {\isasymColon}\ c} that is restricted to types of the corresponding class \isa{c}.  \emph{Sort constraints} like this express a logical
       
   104   precondition for the whole formula.  For example, \isa{assoc}
       
   105   states that for all \isa{{\isasymtau}}, provided that \isa{{\isasymtau}\ {\isasymColon}\ semigroup}, the operation \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is associative.
       
   106 
       
   107   \medskip From a technical point of view, abstract axioms are just
       
   108   ordinary Isabelle theorems, which may be used in proofs without
       
   109   special treatment.  Such ``abstract proofs'' usually yield new
       
   110   ``abstract theorems''.  For example, we may now derive the following
       
   111   well-known laws of general groups.%
       
   112 \end{isamarkuptext}%
       
   113 \isamarkuptrue%
       
   114 \isacommand{theorem}\isamarkupfalse%
       
   115 \ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isacharparenleft}{\isasymone}{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
   116 %
       
   117 \isadelimproof
       
   118 %
       
   119 \endisadelimproof
       
   120 %
       
   121 \isatagproof
       
   122 \isacommand{proof}\isamarkupfalse%
       
   123 \ {\isacharminus}\isanewline
       
   124 \ \ \isacommand{have}\isamarkupfalse%
       
   125 \ {\isachardoublequoteopen}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ {\isacharparenleft}x\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
   126 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   127 \ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
       
   128 \ \ \isacommand{also}\isamarkupfalse%
       
   129 \ \isacommand{have}\isamarkupfalse%
       
   130 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
       
   131 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   132 \ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
       
   133 \ \ \isacommand{also}\isamarkupfalse%
       
   134 \ \isacommand{have}\isamarkupfalse%
       
   135 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
       
   136 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   137 \ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
       
   138 \ \ \isacommand{also}\isamarkupfalse%
       
   139 \ \isacommand{have}\isamarkupfalse%
       
   140 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
       
   141 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   142 \ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
       
   143 \ \ \isacommand{also}\isamarkupfalse%
       
   144 \ \isacommand{have}\isamarkupfalse%
       
   145 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isasymone}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
       
   146 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   147 \ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
       
   148 \ \ \isacommand{also}\isamarkupfalse%
       
   149 \ \isacommand{have}\isamarkupfalse%
       
   150 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}{\isasymone}\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
   151 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   152 \ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
       
   153 \ \ \isacommand{also}\isamarkupfalse%
       
   154 \ \isacommand{have}\isamarkupfalse%
       
   155 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
       
   156 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   157 \ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
       
   158 \ \ \isacommand{also}\isamarkupfalse%
       
   159 \ \isacommand{have}\isamarkupfalse%
       
   160 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}{\isachardoublequoteclose}\isanewline
       
   161 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   162 \ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
       
   163 \ \ \isacommand{finally}\isamarkupfalse%
       
   164 \ \isacommand{show}\isamarkupfalse%
       
   165 \ {\isacharquery}thesis\ \isacommand{{\isachardot}}\isamarkupfalse%
       
   166 \isanewline
       
   167 \isacommand{qed}\isamarkupfalse%
       
   168 %
       
   169 \endisatagproof
       
   170 {\isafoldproof}%
       
   171 %
       
   172 \isadelimproof
       
   173 %
       
   174 \endisadelimproof
       
   175 %
       
   176 \begin{isamarkuptext}%
       
   177 \noindent With \isa{group{\isacharunderscore}right{\isacharunderscore}inverse} already available, \isa{group{\isacharunderscore}right{\isacharunderscore}unit}\label{thm:group-right-unit} is now established
       
   178   much easier.%
       
   179 \end{isamarkuptext}%
       
   180 \isamarkuptrue%
       
   181 \isacommand{theorem}\isamarkupfalse%
       
   182 \ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ {\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
   183 %
       
   184 \isadelimproof
       
   185 %
       
   186 \endisadelimproof
       
   187 %
       
   188 \isatagproof
       
   189 \isacommand{proof}\isamarkupfalse%
       
   190 \ {\isacharminus}\isanewline
       
   191 \ \ \isacommand{have}\isamarkupfalse%
       
   192 \ {\isachardoublequoteopen}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
   193 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   194 \ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
       
   195 \ \ \isacommand{also}\isamarkupfalse%
       
   196 \ \isacommand{have}\isamarkupfalse%
       
   197 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x{\isachardoublequoteclose}\isanewline
       
   198 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   199 \ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
       
   200 \ \ \isacommand{also}\isamarkupfalse%
       
   201 \ \isacommand{have}\isamarkupfalse%
       
   202 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ x{\isachardoublequoteclose}\isanewline
       
   203 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   204 \ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharparenright}\isanewline
       
   205 \ \ \isacommand{also}\isamarkupfalse%
       
   206 \ \isacommand{have}\isamarkupfalse%
       
   207 \ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
       
   208 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   209 \ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
       
   210 \ \ \isacommand{finally}\isamarkupfalse%
       
   211 \ \isacommand{show}\isamarkupfalse%
       
   212 \ {\isacharquery}thesis\ \isacommand{{\isachardot}}\isamarkupfalse%
       
   213 \isanewline
       
   214 \isacommand{qed}\isamarkupfalse%
       
   215 %
       
   216 \endisatagproof
       
   217 {\isafoldproof}%
       
   218 %
       
   219 \isadelimproof
       
   220 %
       
   221 \endisadelimproof
       
   222 %
       
   223 \begin{isamarkuptext}%
       
   224 \medskip Abstract theorems may be instantiated to only those types
       
   225   \isa{{\isasymtau}} where the appropriate class membership \isa{{\isasymtau}\ {\isasymColon}\ c} is
       
   226   known at Isabelle's type signature level.  Since we have \isa{agroup\ {\isasymsubseteq}\ group\ {\isasymsubseteq}\ semigroup} by definition, all theorems of \isa{semigroup} and \isa{group} are automatically inherited by \isa{group} and \isa{agroup}.%
       
   227 \end{isamarkuptext}%
       
   228 \isamarkuptrue%
       
   229 %
       
   230 \isamarkupsubsection{Abstract instantiation%
       
   231 }
       
   232 \isamarkuptrue%
       
   233 %
       
   234 \begin{isamarkuptext}%
       
   235 From the definition, the \isa{monoid} and \isa{group} classes
       
   236   have been independent.  Note that for monoids, \isa{right{\isacharunderscore}unit}
       
   237   had to be included as an axiom, but for groups both \isa{right{\isacharunderscore}unit} and \isa{right{\isacharunderscore}inverse} are derivable from the other
       
   238   axioms.  With \isa{group{\isacharunderscore}right{\isacharunderscore}unit} derived as a theorem of group
       
   239   theory (see page~\pageref{thm:group-right-unit}), we may now
       
   240   instantiate \isa{monoid\ {\isasymsubseteq}\ semigroup} and \isa{group\ {\isasymsubseteq}\ monoid} properly as follows (cf.\ \figref{fig:monoid-group}).
       
   241 
       
   242  \begin{figure}[htbp]
       
   243    \begin{center}
       
   244      \small
       
   245      \unitlength 0.6mm
       
   246      \begin{picture}(65,90)(0,-10)
       
   247        \put(15,10){\line(0,1){10}} \put(15,30){\line(0,1){10}}
       
   248        \put(15,50){\line(1,1){10}} \put(35,60){\line(1,-1){10}}
       
   249        \put(15,5){\makebox(0,0){\isa{agroup}}}
       
   250        \put(15,25){\makebox(0,0){\isa{group}}}
       
   251        \put(15,45){\makebox(0,0){\isa{semigroup}}}
       
   252        \put(30,65){\makebox(0,0){\isa{type}}} \put(50,45){\makebox(0,0){\isa{monoid}}}
       
   253      \end{picture}
       
   254      \hspace{4em}
       
   255      \begin{picture}(30,90)(0,0)
       
   256        \put(15,10){\line(0,1){10}} \put(15,30){\line(0,1){10}}
       
   257        \put(15,50){\line(0,1){10}} \put(15,70){\line(0,1){10}}
       
   258        \put(15,5){\makebox(0,0){\isa{agroup}}}
       
   259        \put(15,25){\makebox(0,0){\isa{group}}}
       
   260        \put(15,45){\makebox(0,0){\isa{monoid}}}
       
   261        \put(15,65){\makebox(0,0){\isa{semigroup}}}
       
   262        \put(15,85){\makebox(0,0){\isa{type}}}
       
   263      \end{picture}
       
   264      \caption{Monoids and groups: according to definition, and by proof}
       
   265      \label{fig:monoid-group}
       
   266    \end{center}
       
   267  \end{figure}%
       
   268 \end{isamarkuptext}%
       
   269 \isamarkuptrue%
       
   270 \isacommand{instance}\isamarkupfalse%
       
   271 \ monoid\ {\isasymsubseteq}\ semigroup\isanewline
       
   272 %
       
   273 \isadelimproof
       
   274 %
       
   275 \endisadelimproof
       
   276 %
       
   277 \isatagproof
       
   278 \isacommand{proof}\isamarkupfalse%
       
   279 \isanewline
       
   280 \ \ \isacommand{fix}\isamarkupfalse%
       
   281 \ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a{\isasymColon}monoid{\isachardoublequoteclose}\isanewline
       
   282 \ \ \isacommand{show}\isamarkupfalse%
       
   283 \ {\isachardoublequoteopen}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
   284 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   285 \ {\isacharparenleft}rule\ monoid{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
       
   286 \isacommand{qed}\isamarkupfalse%
       
   287 %
       
   288 \endisatagproof
       
   289 {\isafoldproof}%
       
   290 %
       
   291 \isadelimproof
       
   292 \isanewline
       
   293 %
       
   294 \endisadelimproof
       
   295 \isanewline
       
   296 \isacommand{instance}\isamarkupfalse%
       
   297 \ group\ {\isasymsubseteq}\ monoid\isanewline
       
   298 %
       
   299 \isadelimproof
       
   300 %
       
   301 \endisadelimproof
       
   302 %
       
   303 \isatagproof
       
   304 \isacommand{proof}\isamarkupfalse%
       
   305 \isanewline
       
   306 \ \ \isacommand{fix}\isamarkupfalse%
       
   307 \ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a{\isasymColon}group{\isachardoublequoteclose}\isanewline
       
   308 \ \ \isacommand{show}\isamarkupfalse%
       
   309 \ {\isachardoublequoteopen}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
   310 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   311 \ {\isacharparenleft}rule\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
       
   312 \ \ \isacommand{show}\isamarkupfalse%
       
   313 \ {\isachardoublequoteopen}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
       
   314 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   315 \ {\isacharparenleft}rule\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
       
   316 \ \ \isacommand{show}\isamarkupfalse%
       
   317 \ {\isachardoublequoteopen}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
       
   318 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   319 \ {\isacharparenleft}rule\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharparenright}\isanewline
       
   320 \isacommand{qed}\isamarkupfalse%
       
   321 %
       
   322 \endisatagproof
       
   323 {\isafoldproof}%
       
   324 %
       
   325 \isadelimproof
       
   326 %
       
   327 \endisadelimproof
       
   328 %
       
   329 \begin{isamarkuptext}%
       
   330 \medskip The \isakeyword{instance} command sets up an appropriate
       
   331   goal that represents the class inclusion (or type arity, see
       
   332   \secref{sec:inst-arity}) to be proven (see also
       
   333   \cite{isabelle-isar-ref}).  The initial proof step causes
       
   334   back-chaining of class membership statements wrt.\ the hierarchy of
       
   335   any classes defined in the current theory; the effect is to reduce
       
   336   to the initial statement to a number of goals that directly
       
   337   correspond to any class axioms encountered on the path upwards
       
   338   through the class hierarchy.%
       
   339 \end{isamarkuptext}%
       
   340 \isamarkuptrue%
       
   341 %
       
   342 \isamarkupsubsection{Concrete instantiation \label{sec:inst-arity}%
       
   343 }
       
   344 \isamarkuptrue%
       
   345 %
       
   346 \begin{isamarkuptext}%
       
   347 So far we have covered the case of the form
       
   348   \isakeyword{instance}~\isa{c\isactrlsub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{2}}}, namely
       
   349   \emph{abstract instantiation} --- $c@1$ is more special than \isa{c\isactrlsub {\isadigit{1}}} and thus an instance of \isa{c\isactrlsub {\isadigit{2}}}.  Even more
       
   350   interesting for practical applications are \emph{concrete
       
   351   instantiations} of axiomatic type classes.  That is, certain simple
       
   352   schemes \isa{{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t\ {\isasymColon}\ c} of class
       
   353   membership may be established at the logical level and then
       
   354   transferred to Isabelle's type signature level.
       
   355 
       
   356   \medskip As a typical example, we show that type \isa{bool} with
       
   357   exclusive-or as \isa{{\isasymodot}} operation, identity as \isa{{\isasyminv}}, and
       
   358   \isa{False} as \isa{{\isasymone}} forms an Abelian group.%
       
   359 \end{isamarkuptext}%
       
   360 \isamarkuptrue%
       
   361 \isacommand{defs}\isamarkupfalse%
       
   362 \ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline
       
   363 \ \ times{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ y\ {\isasymequiv}\ x\ {\isasymnoteq}\ {\isacharparenleft}y{\isasymColon}bool{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
   364 \ \ inverse{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequoteopen}x{\isasyminv}\ {\isasymequiv}\ x{\isasymColon}bool{\isachardoublequoteclose}\isanewline
       
   365 \ \ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequoteopen}{\isasymone}\ {\isasymequiv}\ False{\isachardoublequoteclose}%
       
   366 \begin{isamarkuptext}%
       
   367 \medskip It is important to note that above \isakeyword{defs} are
       
   368   just overloaded meta-level constant definitions, where type classes
       
   369   are not yet involved at all.  This form of constant definition with
       
   370   overloading (and optional recursion over the syntactic structure of
       
   371   simple types) are admissible as definitional extensions of plain HOL
       
   372   \cite{Wenzel:1997:TPHOL}.  The Haskell-style type system is not
       
   373   required for overloading.  Nevertheless, overloaded definitions are
       
   374   best applied in the context of type classes.
       
   375 
       
   376   \medskip Since we have chosen above \isakeyword{defs} of the generic
       
   377   group operations on type \isa{bool} appropriately, the class
       
   378   membership \isa{bool\ {\isasymColon}\ agroup} may be now derived as follows.%
       
   379 \end{isamarkuptext}%
       
   380 \isamarkuptrue%
       
   381 \isacommand{instance}\isamarkupfalse%
       
   382 \ bool\ {\isacharcolon}{\isacharcolon}\ agroup\isanewline
       
   383 %
       
   384 \isadelimproof
       
   385 %
       
   386 \endisadelimproof
       
   387 %
       
   388 \isatagproof
       
   389 \isacommand{proof}\isamarkupfalse%
       
   390 \ {\isacharparenleft}intro{\isacharunderscore}classes{\isacharcomma}\isanewline
       
   391 \ \ \ \ unfold\ times{\isacharunderscore}bool{\isacharunderscore}def\ inverse{\isacharunderscore}bool{\isacharunderscore}def\ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharparenright}\isanewline
       
   392 \ \ \isacommand{fix}\isamarkupfalse%
       
   393 \ x\ y\ z\isanewline
       
   394 \ \ \isacommand{show}\isamarkupfalse%
       
   395 \ {\isachardoublequoteopen}{\isacharparenleft}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isasymnoteq}\ z{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isasymnoteq}\ {\isacharparenleft}y\ {\isasymnoteq}\ z{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
       
   396 \ blast\isanewline
       
   397 \ \ \isacommand{show}\isamarkupfalse%
       
   398 \ {\isachardoublequoteopen}{\isacharparenleft}False\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ x{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
       
   399 \ blast\isanewline
       
   400 \ \ \isacommand{show}\isamarkupfalse%
       
   401 \ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ False{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
       
   402 \ blast\isanewline
       
   403 \ \ \isacommand{show}\isamarkupfalse%
       
   404 \ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}y\ {\isasymnoteq}\ x{\isacharparenright}{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
       
   405 \ blast\isanewline
       
   406 \isacommand{qed}\isamarkupfalse%
       
   407 %
       
   408 \endisatagproof
       
   409 {\isafoldproof}%
       
   410 %
       
   411 \isadelimproof
       
   412 %
       
   413 \endisadelimproof
       
   414 %
       
   415 \begin{isamarkuptext}%
       
   416 The result of an \isakeyword{instance} statement is both expressed
       
   417   as a theorem of Isabelle's meta-logic, and as a type arity of the
       
   418   type signature.  The latter enables type-inference system to take
       
   419   care of this new instance automatically.
       
   420 
       
   421   \medskip We could now also instantiate our group theory classes to
       
   422   many other concrete types.  For example, \isa{int\ {\isasymColon}\ agroup}
       
   423   (e.g.\ by defining \isa{{\isasymodot}} as addition, \isa{{\isasyminv}} as negation
       
   424   and \isa{{\isasymone}} as zero) or \isa{list\ {\isasymColon}\ {\isacharparenleft}type{\isacharparenright}\ semigroup}
       
   425   (e.g.\ if \isa{{\isasymodot}} is defined as list append).  Thus, the
       
   426   characteristic constants \isa{{\isasymodot}}, \isa{{\isasyminv}}, \isa{{\isasymone}}
       
   427   really become overloaded, i.e.\ have different meanings on different
       
   428   types.%
       
   429 \end{isamarkuptext}%
       
   430 \isamarkuptrue%
       
   431 %
       
   432 \isamarkupsubsection{Lifting and Functors%
       
   433 }
       
   434 \isamarkuptrue%
       
   435 %
       
   436 \begin{isamarkuptext}%
       
   437 As already mentioned above, overloading in the simply-typed HOL
       
   438   systems may include recursion over the syntactic structure of types.
       
   439   That is, definitional equations \isa{c\isactrlsup {\isasymtau}\ {\isasymequiv}\ t} may also
       
   440   contain constants of name \isa{c} on the right-hand side --- if
       
   441   these have types that are structurally simpler than \isa{{\isasymtau}}.
       
   442 
       
   443   This feature enables us to \emph{lift operations}, say to Cartesian
       
   444   products, direct sums or function spaces.  Subsequently we lift
       
   445   \isa{{\isasymodot}} component-wise to binary products \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}.%
       
   446 \end{isamarkuptext}%
       
   447 \isamarkuptrue%
       
   448 \isacommand{defs}\isamarkupfalse%
       
   449 \ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline
       
   450 \ \ times{\isacharunderscore}prod{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequoteopen}p\ {\isasymodot}\ q\ {\isasymequiv}\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}{\isachardoublequoteclose}%
       
   451 \begin{isamarkuptext}%
       
   452 It is very easy to see that associativity of \isa{{\isasymodot}} on \isa{{\isacharprime}a}
       
   453   and \isa{{\isasymodot}} on \isa{{\isacharprime}b} transfers to \isa{{\isasymodot}} on \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}.  Hence the binary type constructor \isa{{\isasymodot}} maps semigroups
       
   454   to semigroups.  This may be established formally as follows.%
       
   455 \end{isamarkuptext}%
       
   456 \isamarkuptrue%
       
   457 \isacommand{instance}\isamarkupfalse%
       
   458 \ {\isacharasterisk}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}semigroup{\isacharcomma}\ semigroup{\isacharparenright}\ semigroup\isanewline
       
   459 %
       
   460 \isadelimproof
       
   461 %
       
   462 \endisadelimproof
       
   463 %
       
   464 \isatagproof
       
   465 \isacommand{proof}\isamarkupfalse%
       
   466 \ {\isacharparenleft}intro{\isacharunderscore}classes{\isacharcomma}\ unfold\ times{\isacharunderscore}prod{\isacharunderscore}def{\isacharparenright}\isanewline
       
   467 \ \ \isacommand{fix}\isamarkupfalse%
       
   468 \ p\ q\ r\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a{\isasymColon}semigroup\ {\isasymtimes}\ {\isacharprime}b{\isasymColon}semigroup{\isachardoublequoteclose}\isanewline
       
   469 \ \ \isacommand{show}\isamarkupfalse%
       
   470 \isanewline
       
   471 \ \ \ \ {\isachardoublequoteopen}{\isacharparenleft}fst\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}\ {\isasymodot}\ fst\ r{\isacharcomma}\isanewline
       
   472 \ \ \ \ \ \ snd\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}\ {\isasymodot}\ snd\ r{\isacharparenright}\ {\isacharequal}\isanewline
       
   473 \ \ \ \ \ \ \ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ {\isacharparenleft}fst\ q\ {\isasymodot}\ fst\ r{\isacharcomma}\ snd\ q\ {\isasymodot}\ snd\ r{\isacharparenright}{\isacharcomma}\isanewline
       
   474 \ \ \ \ \ \ \ \ snd\ p\ {\isasymodot}\ snd\ {\isacharparenleft}fst\ q\ {\isasymodot}\ fst\ r{\isacharcomma}\ snd\ q\ {\isasymodot}\ snd\ r{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
       
   475 \ \ \ \ \isacommand{by}\isamarkupfalse%
       
   476 \ {\isacharparenleft}simp\ add{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
       
   477 \isacommand{qed}\isamarkupfalse%
       
   478 %
       
   479 \endisatagproof
       
   480 {\isafoldproof}%
       
   481 %
       
   482 \isadelimproof
       
   483 %
       
   484 \endisadelimproof
       
   485 %
       
   486 \begin{isamarkuptext}%
       
   487 Thus, if we view class instances as ``structures'', then overloaded
       
   488   constant definitions with recursion over types indirectly provide
       
   489   some kind of ``functors'' --- i.e.\ mappings between abstract
       
   490   theories.%
       
   491 \end{isamarkuptext}%
       
   492 \isamarkuptrue%
       
   493 %
       
   494 \isadelimtheory
       
   495 %
       
   496 \endisadelimtheory
       
   497 %
       
   498 \isatagtheory
       
   499 \isacommand{end}\isamarkupfalse%
       
   500 %
       
   501 \endisatagtheory
       
   502 {\isafoldtheory}%
       
   503 %
       
   504 \isadelimtheory
       
   505 %
       
   506 \endisadelimtheory
       
   507 \isanewline
       
   508 \end{isabellebody}%
       
   509 %%% Local Variables:
       
   510 %%% mode: latex
       
   511 %%% TeX-master: "root"
       
   512 %%% End: