doc-src/IsarImplementation/Thy/document/logic.tex
changeset 30130 e23770bc97c8
parent 30129 419116f1157a
parent 30114 0726792e1726
child 30131 6be1be402ef0
equal deleted inserted replaced
30129:419116f1157a 30130:e23770bc97c8
     1 %
       
     2 \begin{isabellebody}%
       
     3 \def\isabellecontext{logic}%
       
     4 %
       
     5 \isadelimtheory
       
     6 %
       
     7 \endisadelimtheory
       
     8 %
       
     9 \isatagtheory
       
    10 \isacommand{theory}\isamarkupfalse%
       
    11 \ logic\ \isakeyword{imports}\ base\ \isakeyword{begin}%
       
    12 \endisatagtheory
       
    13 {\isafoldtheory}%
       
    14 %
       
    15 \isadelimtheory
       
    16 %
       
    17 \endisadelimtheory
       
    18 %
       
    19 \isamarkupchapter{Primitive logic \label{ch:logic}%
       
    20 }
       
    21 \isamarkuptrue%
       
    22 %
       
    23 \begin{isamarkuptext}%
       
    24 The logical foundations of Isabelle/Isar are that of the Pure logic,
       
    25   which has been introduced as a natural-deduction framework in
       
    26   \cite{paulson700}.  This is essentially the same logic as ``\isa{{\isasymlambda}HOL}'' in the more abstract setting of Pure Type Systems (PTS)
       
    27   \cite{Barendregt-Geuvers:2001}, although there are some key
       
    28   differences in the specific treatment of simple types in
       
    29   Isabelle/Pure.
       
    30 
       
    31   Following type-theoretic parlance, the Pure logic consists of three
       
    32   levels of \isa{{\isasymlambda}}-calculus with corresponding arrows, \isa{{\isasymRightarrow}} for syntactic function space (terms depending on terms), \isa{{\isasymAnd}} for universal quantification (proofs depending on terms), and
       
    33   \isa{{\isasymLongrightarrow}} for implication (proofs depending on proofs).
       
    34 
       
    35   Derivations are relative to a logical theory, which declares type
       
    36   constructors, constants, and axioms.  Theory declarations support
       
    37   schematic polymorphism, which is strictly speaking outside the
       
    38   logic.\footnote{This is the deeper logical reason, why the theory
       
    39   context \isa{{\isasymTheta}} is separate from the proof context \isa{{\isasymGamma}}
       
    40   of the core calculus.}%
       
    41 \end{isamarkuptext}%
       
    42 \isamarkuptrue%
       
    43 %
       
    44 \isamarkupsection{Types \label{sec:types}%
       
    45 }
       
    46 \isamarkuptrue%
       
    47 %
       
    48 \begin{isamarkuptext}%
       
    49 The language of types is an uninterpreted order-sorted first-order
       
    50   algebra; types are qualified by ordered type classes.
       
    51 
       
    52   \medskip A \emph{type class} is an abstract syntactic entity
       
    53   declared in the theory context.  The \emph{subclass relation} \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}} is specified by stating an acyclic
       
    54   generating relation; the transitive closure is maintained
       
    55   internally.  The resulting relation is an ordering: reflexive,
       
    56   transitive, and antisymmetric.
       
    57 
       
    58   A \emph{sort} is a list of type classes written as \isa{s\ {\isacharequal}\ {\isacharbraceleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlisub m{\isacharbraceright}}, which represents symbolic
       
    59   intersection.  Notationally, the curly braces are omitted for
       
    60   singleton intersections, i.e.\ any class \isa{c} may be read as
       
    61   a sort \isa{{\isacharbraceleft}c{\isacharbraceright}}.  The ordering on type classes is extended to
       
    62   sorts according to the meaning of intersections: \isa{{\isacharbraceleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}\ c\isactrlisub m{\isacharbraceright}\ {\isasymsubseteq}\ {\isacharbraceleft}d\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ d\isactrlisub n{\isacharbraceright}} iff
       
    63   \isa{{\isasymforall}j{\isachardot}\ {\isasymexists}i{\isachardot}\ c\isactrlisub i\ {\isasymsubseteq}\ d\isactrlisub j}.  The empty intersection
       
    64   \isa{{\isacharbraceleft}{\isacharbraceright}} refers to the universal sort, which is the largest
       
    65   element wrt.\ the sort order.  The intersections of all (finitely
       
    66   many) classes declared in the current theory are the minimal
       
    67   elements wrt.\ the sort order.
       
    68 
       
    69   \medskip A \emph{fixed type variable} is a pair of a basic name
       
    70   (starting with a \isa{{\isacharprime}} character) and a sort constraint, e.g.\
       
    71   \isa{{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ s{\isacharparenright}} which is usually printed as \isa{{\isasymalpha}\isactrlisub s}.
       
    72   A \emph{schematic type variable} is a pair of an indexname and a
       
    73   sort constraint, e.g.\ \isa{{\isacharparenleft}{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}{\isacharcomma}\ s{\isacharparenright}} which is usually
       
    74   printed as \isa{{\isacharquery}{\isasymalpha}\isactrlisub s}.
       
    75 
       
    76   Note that \emph{all} syntactic components contribute to the identity
       
    77   of type variables, including the sort constraint.  The core logic
       
    78   handles type variables with the same name but different sorts as
       
    79   different, although some outer layers of the system make it hard to
       
    80   produce anything like this.
       
    81 
       
    82   A \emph{type constructor} \isa{{\isasymkappa}} is a \isa{k}-ary operator
       
    83   on types declared in the theory.  Type constructor application is
       
    84   written postfix as \isa{{\isacharparenleft}{\isasymalpha}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlisub k{\isacharparenright}{\isasymkappa}}.  For
       
    85   \isa{k\ {\isacharequal}\ {\isadigit{0}}} the argument tuple is omitted, e.g.\ \isa{prop}
       
    86   instead of \isa{{\isacharparenleft}{\isacharparenright}prop}.  For \isa{k\ {\isacharequal}\ {\isadigit{1}}} the parentheses
       
    87   are omitted, e.g.\ \isa{{\isasymalpha}\ list} instead of \isa{{\isacharparenleft}{\isasymalpha}{\isacharparenright}list}.
       
    88   Further notation is provided for specific constructors, notably the
       
    89   right-associative infix \isa{{\isasymalpha}\ {\isasymRightarrow}\ {\isasymbeta}} instead of \isa{{\isacharparenleft}{\isasymalpha}{\isacharcomma}\ {\isasymbeta}{\isacharparenright}fun}.
       
    90   
       
    91   A \emph{type} is defined inductively over type variables and type
       
    92   constructors as follows: \isa{{\isasymtau}\ {\isacharequal}\ {\isasymalpha}\isactrlisub s\ {\isacharbar}\ {\isacharquery}{\isasymalpha}\isactrlisub s\ {\isacharbar}\ {\isacharparenleft}{\isasymtau}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlsub k{\isacharparenright}{\isasymkappa}}.
       
    93 
       
    94   A \emph{type abbreviation} is a syntactic definition \isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}\ {\isacharequal}\ {\isasymtau}} of an arbitrary type expression \isa{{\isasymtau}} over
       
    95   variables \isa{\isactrlvec {\isasymalpha}}.  Type abbreviations appear as type
       
    96   constructors in the syntax, but are expanded before entering the
       
    97   logical core.
       
    98 
       
    99   A \emph{type arity} declares the image behavior of a type
       
   100   constructor wrt.\ the algebra of sorts: \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlisub k{\isacharparenright}s} means that \isa{{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub k{\isacharparenright}{\isasymkappa}} is
       
   101   of sort \isa{s} if every argument type \isa{{\isasymtau}\isactrlisub i} is
       
   102   of sort \isa{s\isactrlisub i}.  Arity declarations are implicitly
       
   103   completed, i.e.\ \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}c} entails \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}c{\isacharprime}} for any \isa{c{\isacharprime}\ {\isasymsupseteq}\ c}.
       
   104 
       
   105   \medskip The sort algebra is always maintained as \emph{coregular},
       
   106   which means that type arities are consistent with the subclass
       
   107   relation: for any type constructor \isa{{\isasymkappa}}, and classes \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}}, and arities \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s\isactrlisub {\isadigit{1}}{\isacharparenright}c\isactrlisub {\isadigit{1}}} and \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s\isactrlisub {\isadigit{2}}{\isacharparenright}c\isactrlisub {\isadigit{2}}} holds \isa{\isactrlvec s\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ \isactrlvec s\isactrlisub {\isadigit{2}}} component-wise.
       
   108 
       
   109   The key property of a coregular order-sorted algebra is that sort
       
   110   constraints can be solved in a most general fashion: for each type
       
   111   constructor \isa{{\isasymkappa}} and sort \isa{s} there is a most general
       
   112   vector of argument sorts \isa{{\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlisub k{\isacharparenright}} such
       
   113   that a type scheme \isa{{\isacharparenleft}{\isasymalpha}\isactrlbsub s\isactrlisub {\isadigit{1}}\isactrlesub {\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlbsub s\isactrlisub k\isactrlesub {\isacharparenright}{\isasymkappa}} is of sort \isa{s}.
       
   114   Consequently, type unification has most general solutions (modulo
       
   115   equivalence of sorts), so type-inference produces primary types as
       
   116   expected \cite{nipkow-prehofer}.%
       
   117 \end{isamarkuptext}%
       
   118 \isamarkuptrue%
       
   119 %
       
   120 \isadelimmlref
       
   121 %
       
   122 \endisadelimmlref
       
   123 %
       
   124 \isatagmlref
       
   125 %
       
   126 \begin{isamarkuptext}%
       
   127 \begin{mldecls}
       
   128   \indexmltype{class}\verb|type class| \\
       
   129   \indexmltype{sort}\verb|type sort| \\
       
   130   \indexmltype{arity}\verb|type arity| \\
       
   131   \indexmltype{typ}\verb|type typ| \\
       
   132   \indexml{map\_atyps}\verb|map_atyps: (typ -> typ) -> typ -> typ| \\
       
   133   \indexml{fold\_atyps}\verb|fold_atyps: (typ -> 'a -> 'a) -> typ -> 'a -> 'a| \\
       
   134   \end{mldecls}
       
   135   \begin{mldecls}
       
   136   \indexml{Sign.subsort}\verb|Sign.subsort: theory -> sort * sort -> bool| \\
       
   137   \indexml{Sign.of\_sort}\verb|Sign.of_sort: theory -> typ * sort -> bool| \\
       
   138   \indexml{Sign.add\_types}\verb|Sign.add_types: (string * int * mixfix) list -> theory -> theory| \\
       
   139   \indexml{Sign.add\_tyabbrs\_i}\verb|Sign.add_tyabbrs_i: |\isasep\isanewline%
       
   140 \verb|  (string * string list * typ * mixfix) list -> theory -> theory| \\
       
   141   \indexml{Sign.primitive\_class}\verb|Sign.primitive_class: string * class list -> theory -> theory| \\
       
   142   \indexml{Sign.primitive\_classrel}\verb|Sign.primitive_classrel: class * class -> theory -> theory| \\
       
   143   \indexml{Sign.primitive\_arity}\verb|Sign.primitive_arity: arity -> theory -> theory| \\
       
   144   \end{mldecls}
       
   145 
       
   146   \begin{description}
       
   147 
       
   148   \item \verb|class| represents type classes; this is an alias for
       
   149   \verb|string|.
       
   150 
       
   151   \item \verb|sort| represents sorts; this is an alias for
       
   152   \verb|class list|.
       
   153 
       
   154   \item \verb|arity| represents type arities; this is an alias for
       
   155   triples of the form \isa{{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec s{\isacharcomma}\ s{\isacharparenright}} for \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}s} described above.
       
   156 
       
   157   \item \verb|typ| represents types; this is a datatype with
       
   158   constructors \verb|TFree|, \verb|TVar|, \verb|Type|.
       
   159 
       
   160   \item \verb|map_atyps|~\isa{f\ {\isasymtau}} applies the mapping \isa{f}
       
   161   to all atomic types (\verb|TFree|, \verb|TVar|) occurring in \isa{{\isasymtau}}.
       
   162 
       
   163   \item \verb|fold_atyps|~\isa{f\ {\isasymtau}} iterates the operation \isa{f} over all occurrences of atomic types (\verb|TFree|, \verb|TVar|)
       
   164   in \isa{{\isasymtau}}; the type structure is traversed from left to right.
       
   165 
       
   166   \item \verb|Sign.subsort|~\isa{thy\ {\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ s\isactrlisub {\isadigit{2}}{\isacharparenright}}
       
   167   tests the subsort relation \isa{s\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ s\isactrlisub {\isadigit{2}}}.
       
   168 
       
   169   \item \verb|Sign.of_sort|~\isa{thy\ {\isacharparenleft}{\isasymtau}{\isacharcomma}\ s{\isacharparenright}} tests whether type
       
   170   \isa{{\isasymtau}} is of sort \isa{s}.
       
   171 
       
   172   \item \verb|Sign.add_types|~\isa{{\isacharbrackleft}{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ k{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} declares a new
       
   173   type constructors \isa{{\isasymkappa}} with \isa{k} arguments and
       
   174   optional mixfix syntax.
       
   175 
       
   176   \item \verb|Sign.add_tyabbrs_i|~\isa{{\isacharbrackleft}{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec {\isasymalpha}{\isacharcomma}\ {\isasymtau}{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}}
       
   177   defines a new type abbreviation \isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}\ {\isacharequal}\ {\isasymtau}} with
       
   178   optional mixfix syntax.
       
   179 
       
   180   \item \verb|Sign.primitive_class|~\isa{{\isacharparenleft}c{\isacharcomma}\ {\isacharbrackleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlisub n{\isacharbrackright}{\isacharparenright}} declares a new class \isa{c}, together with class
       
   181   relations \isa{c\ {\isasymsubseteq}\ c\isactrlisub i}, for \isa{i\ {\isacharequal}\ {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n}.
       
   182 
       
   183   \item \verb|Sign.primitive_classrel|~\isa{{\isacharparenleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ c\isactrlisub {\isadigit{2}}{\isacharparenright}} declares the class relation \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}}.
       
   184 
       
   185   \item \verb|Sign.primitive_arity|~\isa{{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec s{\isacharcomma}\ s{\isacharparenright}} declares
       
   186   the arity \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}s}.
       
   187 
       
   188   \end{description}%
       
   189 \end{isamarkuptext}%
       
   190 \isamarkuptrue%
       
   191 %
       
   192 \endisatagmlref
       
   193 {\isafoldmlref}%
       
   194 %
       
   195 \isadelimmlref
       
   196 %
       
   197 \endisadelimmlref
       
   198 %
       
   199 \isamarkupsection{Terms \label{sec:terms}%
       
   200 }
       
   201 \isamarkuptrue%
       
   202 %
       
   203 \begin{isamarkuptext}%
       
   204 \glossary{Term}{FIXME}
       
   205 
       
   206   The language of terms is that of simply-typed \isa{{\isasymlambda}}-calculus
       
   207   with de-Bruijn indices for bound variables (cf.\ \cite{debruijn72}
       
   208   or \cite{paulson-ml2}), with the types being determined determined
       
   209   by the corresponding binders.  In contrast, free variables and
       
   210   constants are have an explicit name and type in each occurrence.
       
   211 
       
   212   \medskip A \emph{bound variable} is a natural number \isa{b},
       
   213   which accounts for the number of intermediate binders between the
       
   214   variable occurrence in the body and its binding position.  For
       
   215   example, the de-Bruijn term \isa{{\isasymlambda}\isactrlbsub nat\isactrlesub {\isachardot}\ {\isasymlambda}\isactrlbsub nat\isactrlesub {\isachardot}\ {\isadigit{1}}\ {\isacharplus}\ {\isadigit{0}}} would
       
   216   correspond to \isa{{\isasymlambda}x\isactrlbsub nat\isactrlesub {\isachardot}\ {\isasymlambda}y\isactrlbsub nat\isactrlesub {\isachardot}\ x\ {\isacharplus}\ y} in a named
       
   217   representation.  Note that a bound variable may be represented by
       
   218   different de-Bruijn indices at different occurrences, depending on
       
   219   the nesting of abstractions.
       
   220 
       
   221   A \emph{loose variable} is a bound variable that is outside the
       
   222   scope of local binders.  The types (and names) for loose variables
       
   223   can be managed as a separate context, that is maintained as a stack
       
   224   of hypothetical binders.  The core logic operates on closed terms,
       
   225   without any loose variables.
       
   226 
       
   227   A \emph{fixed variable} is a pair of a basic name and a type, e.g.\
       
   228   \isa{{\isacharparenleft}x{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed \isa{x\isactrlisub {\isasymtau}}.  A
       
   229   \emph{schematic variable} is a pair of an indexname and a type,
       
   230   e.g.\ \isa{{\isacharparenleft}{\isacharparenleft}x{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed as \isa{{\isacharquery}x\isactrlisub {\isasymtau}}.
       
   231 
       
   232   \medskip A \emph{constant} is a pair of a basic name and a type,
       
   233   e.g.\ \isa{{\isacharparenleft}c{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed as \isa{c\isactrlisub {\isasymtau}}.  Constants are declared in the context as polymorphic
       
   234   families \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}, meaning that all substitution instances
       
   235   \isa{c\isactrlisub {\isasymtau}} for \isa{{\isasymtau}\ {\isacharequal}\ {\isasymsigma}{\isasymvartheta}} are valid.
       
   236 
       
   237   The vector of \emph{type arguments} of constant \isa{c\isactrlisub {\isasymtau}}
       
   238   wrt.\ the declaration \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} is defined as the codomain of
       
   239   the matcher \isa{{\isasymvartheta}\ {\isacharequal}\ {\isacharbraceleft}{\isacharquery}{\isasymalpha}\isactrlisub {\isadigit{1}}\ {\isasymmapsto}\ {\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isacharquery}{\isasymalpha}\isactrlisub n\ {\isasymmapsto}\ {\isasymtau}\isactrlisub n{\isacharbraceright}} presented in canonical order \isa{{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharparenright}}.  Within a given theory context,
       
   240   there is a one-to-one correspondence between any constant \isa{c\isactrlisub {\isasymtau}} and the application \isa{c{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharparenright}} of its type arguments.  For example, with \isa{plus\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}}, the instance \isa{plus\isactrlbsub nat\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ nat\isactrlesub } corresponds to \isa{plus{\isacharparenleft}nat{\isacharparenright}}.
       
   241 
       
   242   Constant declarations \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} may contain sort constraints
       
   243   for type variables in \isa{{\isasymsigma}}.  These are observed by
       
   244   type-inference as expected, but \emph{ignored} by the core logic.
       
   245   This means the primitive logic is able to reason with instances of
       
   246   polymorphic constants that the user-level type-checker would reject
       
   247   due to violation of type class restrictions.
       
   248 
       
   249   \medskip An \emph{atomic} term is either a variable or constant.  A
       
   250   \emph{term} is defined inductively over atomic terms, with
       
   251   abstraction and application as follows: \isa{t\ {\isacharequal}\ b\ {\isacharbar}\ x\isactrlisub {\isasymtau}\ {\isacharbar}\ {\isacharquery}x\isactrlisub {\isasymtau}\ {\isacharbar}\ c\isactrlisub {\isasymtau}\ {\isacharbar}\ {\isasymlambda}\isactrlisub {\isasymtau}{\isachardot}\ t\ {\isacharbar}\ t\isactrlisub {\isadigit{1}}\ t\isactrlisub {\isadigit{2}}}.
       
   252   Parsing and printing takes care of converting between an external
       
   253   representation with named bound variables.  Subsequently, we shall
       
   254   use the latter notation instead of internal de-Bruijn
       
   255   representation.
       
   256 
       
   257   The inductive relation \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} assigns a (unique) type to a
       
   258   term according to the structure of atomic terms, abstractions, and
       
   259   applicatins:
       
   260   \[
       
   261   \infer{\isa{a\isactrlisub {\isasymtau}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}}}{}
       
   262   \qquad
       
   263   \infer{\isa{{\isacharparenleft}{\isasymlambda}x\isactrlsub {\isasymtau}{\isachardot}\ t{\isacharparenright}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymsigma}}}{\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}}
       
   264   \qquad
       
   265   \infer{\isa{t\ u\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}}{\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymsigma}} & \isa{u\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}}}
       
   266   \]
       
   267   A \emph{well-typed term} is a term that can be typed according to these rules.
       
   268 
       
   269   Typing information can be omitted: type-inference is able to
       
   270   reconstruct the most general type of a raw term, while assigning
       
   271   most general types to all of its variables and constants.
       
   272   Type-inference depends on a context of type constraints for fixed
       
   273   variables, and declarations for polymorphic constants.
       
   274 
       
   275   The identity of atomic terms consists both of the name and the type
       
   276   component.  This means that different variables \isa{x\isactrlbsub {\isasymtau}\isactrlisub {\isadigit{1}}\isactrlesub } and \isa{x\isactrlbsub {\isasymtau}\isactrlisub {\isadigit{2}}\isactrlesub } may become the same after type
       
   277   instantiation.  Some outer layers of the system make it hard to
       
   278   produce variables of the same name, but different types.  In
       
   279   contrast, mixed instances of polymorphic constants occur frequently.
       
   280 
       
   281   \medskip The \emph{hidden polymorphism} of a term \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}
       
   282   is the set of type variables occurring in \isa{t}, but not in
       
   283   \isa{{\isasymsigma}}.  This means that the term implicitly depends on type
       
   284   arguments that are not accounted in the result type, i.e.\ there are
       
   285   different type instances \isa{t{\isasymvartheta}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} and \isa{t{\isasymvartheta}{\isacharprime}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} with the same type.  This slightly
       
   286   pathological situation notoriously demands additional care.
       
   287 
       
   288   \medskip A \emph{term abbreviation} is a syntactic definition \isa{c\isactrlisub {\isasymsigma}\ {\isasymequiv}\ t} of a closed term \isa{t} of type \isa{{\isasymsigma}},
       
   289   without any hidden polymorphism.  A term abbreviation looks like a
       
   290   constant in the syntax, but is expanded before entering the logical
       
   291   core.  Abbreviations are usually reverted when printing terms, using
       
   292   \isa{t\ {\isasymrightarrow}\ c\isactrlisub {\isasymsigma}} as rules for higher-order rewriting.
       
   293 
       
   294   \medskip Canonical operations on \isa{{\isasymlambda}}-terms include \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion: \isa{{\isasymalpha}}-conversion refers to capture-free
       
   295   renaming of bound variables; \isa{{\isasymbeta}}-conversion contracts an
       
   296   abstraction applied to an argument term, substituting the argument
       
   297   in the body: \isa{{\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharparenright}a} becomes \isa{b{\isacharbrackleft}a{\isacharslash}x{\isacharbrackright}}; \isa{{\isasymeta}}-conversion contracts vacuous application-abstraction: \isa{{\isasymlambda}x{\isachardot}\ f\ x} becomes \isa{f}, provided that the bound variable
       
   298   does not occur in \isa{f}.
       
   299 
       
   300   Terms are normally treated modulo \isa{{\isasymalpha}}-conversion, which is
       
   301   implicit in the de-Bruijn representation.  Names for bound variables
       
   302   in abstractions are maintained separately as (meaningless) comments,
       
   303   mostly for parsing and printing.  Full \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion is
       
   304   commonplace in various standard operations (\secref{sec:obj-rules})
       
   305   that are based on higher-order unification and matching.%
       
   306 \end{isamarkuptext}%
       
   307 \isamarkuptrue%
       
   308 %
       
   309 \isadelimmlref
       
   310 %
       
   311 \endisadelimmlref
       
   312 %
       
   313 \isatagmlref
       
   314 %
       
   315 \begin{isamarkuptext}%
       
   316 \begin{mldecls}
       
   317   \indexmltype{term}\verb|type term| \\
       
   318   \indexml{op aconv}\verb|op aconv: term * term -> bool| \\
       
   319   \indexml{map\_types}\verb|map_types: (typ -> typ) -> term -> term| \\
       
   320   \indexml{fold\_types}\verb|fold_types: (typ -> 'a -> 'a) -> term -> 'a -> 'a| \\
       
   321   \indexml{map\_aterms}\verb|map_aterms: (term -> term) -> term -> term| \\
       
   322   \indexml{fold\_aterms}\verb|fold_aterms: (term -> 'a -> 'a) -> term -> 'a -> 'a| \\
       
   323   \end{mldecls}
       
   324   \begin{mldecls}
       
   325   \indexml{fastype\_of}\verb|fastype_of: term -> typ| \\
       
   326   \indexml{lambda}\verb|lambda: term -> term -> term| \\
       
   327   \indexml{betapply}\verb|betapply: term * term -> term| \\
       
   328   \indexml{Sign.declare\_const}\verb|Sign.declare_const: Properties.T -> (binding * typ) * mixfix ->|\isasep\isanewline%
       
   329 \verb|  theory -> term * theory| \\
       
   330   \indexml{Sign.add\_abbrev}\verb|Sign.add_abbrev: string -> Properties.T -> binding * term ->|\isasep\isanewline%
       
   331 \verb|  theory -> (term * term) * theory| \\
       
   332   \indexml{Sign.const\_typargs}\verb|Sign.const_typargs: theory -> string * typ -> typ list| \\
       
   333   \indexml{Sign.const\_instance}\verb|Sign.const_instance: theory -> string * typ list -> typ| \\
       
   334   \end{mldecls}
       
   335 
       
   336   \begin{description}
       
   337 
       
   338   \item \verb|term| represents de-Bruijn terms, with comments in
       
   339   abstractions, and explicitly named free variables and constants;
       
   340   this is a datatype with constructors \verb|Bound|, \verb|Free|, \verb|Var|, \verb|Const|, \verb|Abs|, \verb|op $|.
       
   341 
       
   342   \item \isa{t}~\verb|aconv|~\isa{u} checks \isa{{\isasymalpha}}-equivalence of two terms.  This is the basic equality relation
       
   343   on type \verb|term|; raw datatype equality should only be used
       
   344   for operations related to parsing or printing!
       
   345 
       
   346   \item \verb|map_types|~\isa{f\ t} applies the mapping \isa{f} to all types occurring in \isa{t}.
       
   347 
       
   348   \item \verb|fold_types|~\isa{f\ t} iterates the operation \isa{f} over all occurrences of types in \isa{t}; the term
       
   349   structure is traversed from left to right.
       
   350 
       
   351   \item \verb|map_aterms|~\isa{f\ t} applies the mapping \isa{f}
       
   352   to all atomic terms (\verb|Bound|, \verb|Free|, \verb|Var|, \verb|Const|) occurring in \isa{t}.
       
   353 
       
   354   \item \verb|fold_aterms|~\isa{f\ t} iterates the operation \isa{f} over all occurrences of atomic terms (\verb|Bound|, \verb|Free|,
       
   355   \verb|Var|, \verb|Const|) in \isa{t}; the term structure is
       
   356   traversed from left to right.
       
   357 
       
   358   \item \verb|fastype_of|~\isa{t} determines the type of a
       
   359   well-typed term.  This operation is relatively slow, despite the
       
   360   omission of any sanity checks.
       
   361 
       
   362   \item \verb|lambda|~\isa{a\ b} produces an abstraction \isa{{\isasymlambda}a{\isachardot}\ b}, where occurrences of the atomic term \isa{a} in the
       
   363   body \isa{b} are replaced by bound variables.
       
   364 
       
   365   \item \verb|betapply|~\isa{{\isacharparenleft}t{\isacharcomma}\ u{\isacharparenright}} produces an application \isa{t\ u}, with topmost \isa{{\isasymbeta}}-conversion if \isa{t} is an
       
   366   abstraction.
       
   367 
       
   368   \item \verb|Sign.declare_const|~\isa{properties\ {\isacharparenleft}{\isacharparenleft}c{\isacharcomma}\ {\isasymsigma}{\isacharparenright}{\isacharcomma}\ mx{\isacharparenright}}
       
   369   declares a new constant \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} with optional mixfix
       
   370   syntax.
       
   371 
       
   372   \item \verb|Sign.add_abbrev|~\isa{print{\isacharunderscore}mode\ properties\ {\isacharparenleft}c{\isacharcomma}\ t{\isacharparenright}}
       
   373   introduces a new term abbreviation \isa{c\ {\isasymequiv}\ t}.
       
   374 
       
   375   \item \verb|Sign.const_typargs|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isasymtau}{\isacharparenright}} and \verb|Sign.const_instance|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isacharbrackleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharbrackright}{\isacharparenright}}
       
   376   convert between two representations of polymorphic constants: full
       
   377   type instance vs.\ compact type arguments form.
       
   378 
       
   379   \end{description}%
       
   380 \end{isamarkuptext}%
       
   381 \isamarkuptrue%
       
   382 %
       
   383 \endisatagmlref
       
   384 {\isafoldmlref}%
       
   385 %
       
   386 \isadelimmlref
       
   387 %
       
   388 \endisadelimmlref
       
   389 %
       
   390 \isamarkupsection{Theorems \label{sec:thms}%
       
   391 }
       
   392 \isamarkuptrue%
       
   393 %
       
   394 \begin{isamarkuptext}%
       
   395 \glossary{Proposition}{FIXME A \seeglossary{term} of
       
   396   \seeglossary{type} \isa{prop}.  Internally, there is nothing
       
   397   special about propositions apart from their type, but the concrete
       
   398   syntax enforces a clear distinction.  Propositions are structured
       
   399   via implication \isa{A\ {\isasymLongrightarrow}\ B} or universal quantification \isa{{\isasymAnd}x{\isachardot}\ B\ x} --- anything else is considered atomic.  The canonical
       
   400   form for propositions is that of a \seeglossary{Hereditary Harrop
       
   401   Formula}. FIXME}
       
   402 
       
   403   \glossary{Theorem}{A proven proposition within a certain theory and
       
   404   proof context, formally \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}; both contexts are
       
   405   rarely spelled out explicitly.  Theorems are usually normalized
       
   406   according to the \seeglossary{HHF} format. FIXME}
       
   407 
       
   408   \glossary{Fact}{Sometimes used interchangeably for
       
   409   \seeglossary{theorem}.  Strictly speaking, a list of theorems,
       
   410   essentially an extra-logical conjunction.  Facts emerge either as
       
   411   local assumptions, or as results of local goal statements --- both
       
   412   may be simultaneous, hence the list representation. FIXME}
       
   413 
       
   414   \glossary{Schematic variable}{FIXME}
       
   415 
       
   416   \glossary{Fixed variable}{A variable that is bound within a certain
       
   417   proof context; an arbitrary-but-fixed entity within a portion of
       
   418   proof text. FIXME}
       
   419 
       
   420   \glossary{Free variable}{Synonymous for \seeglossary{fixed
       
   421   variable}. FIXME}
       
   422 
       
   423   \glossary{Bound variable}{FIXME}
       
   424 
       
   425   \glossary{Variable}{See \seeglossary{schematic variable},
       
   426   \seeglossary{fixed variable}, \seeglossary{bound variable}, or
       
   427   \seeglossary{type variable}.  The distinguishing feature of
       
   428   different variables is their binding scope. FIXME}
       
   429 
       
   430   A \emph{proposition} is a well-typed term of type \isa{prop}, a
       
   431   \emph{theorem} is a proven proposition (depending on a context of
       
   432   hypotheses and the background theory).  Primitive inferences include
       
   433   plain natural deduction rules for the primary connectives \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} of the framework.  There is also a builtin
       
   434   notion of equality/equivalence \isa{{\isasymequiv}}.%
       
   435 \end{isamarkuptext}%
       
   436 \isamarkuptrue%
       
   437 %
       
   438 \isamarkupsubsection{Primitive connectives and rules \label{sec:prim-rules}%
       
   439 }
       
   440 \isamarkuptrue%
       
   441 %
       
   442 \begin{isamarkuptext}%
       
   443 The theory \isa{Pure} contains constant declarations for the
       
   444   primitive connectives \isa{{\isasymAnd}}, \isa{{\isasymLongrightarrow}}, and \isa{{\isasymequiv}} of
       
   445   the logical framework, see \figref{fig:pure-connectives}.  The
       
   446   derivability judgment \isa{A\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ A\isactrlisub n\ {\isasymturnstile}\ B} is
       
   447   defined inductively by the primitive inferences given in
       
   448   \figref{fig:prim-rules}, with the global restriction that the
       
   449   hypotheses must \emph{not} contain any schematic variables.  The
       
   450   builtin equality is conceptually axiomatized as shown in
       
   451   \figref{fig:pure-equality}, although the implementation works
       
   452   directly with derived inferences.
       
   453 
       
   454   \begin{figure}[htb]
       
   455   \begin{center}
       
   456   \begin{tabular}{ll}
       
   457   \isa{all\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}{\isasymalpha}\ {\isasymRightarrow}\ prop{\isacharparenright}\ {\isasymRightarrow}\ prop} & universal quantification (binder \isa{{\isasymAnd}}) \\
       
   458   \isa{{\isasymLongrightarrow}\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & implication (right associative infix) \\
       
   459   \isa{{\isasymequiv}\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & equality relation (infix) \\
       
   460   \end{tabular}
       
   461   \caption{Primitive connectives of Pure}\label{fig:pure-connectives}
       
   462   \end{center}
       
   463   \end{figure}
       
   464 
       
   465   \begin{figure}[htb]
       
   466   \begin{center}
       
   467   \[
       
   468   \infer[\isa{{\isacharparenleft}axiom{\isacharparenright}}]{\isa{{\isasymturnstile}\ A}}{\isa{A\ {\isasymin}\ {\isasymTheta}}}
       
   469   \qquad
       
   470   \infer[\isa{{\isacharparenleft}assume{\isacharparenright}}]{\isa{A\ {\isasymturnstile}\ A}}{}
       
   471   \]
       
   472   \[
       
   473   \infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}intro{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymAnd}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ b{\isacharbrackleft}x{\isacharbrackright}} & \isa{x\ {\isasymnotin}\ {\isasymGamma}}}
       
   474   \qquad
       
   475   \infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}elim{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ b{\isacharbrackleft}a{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymAnd}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}}}
       
   476   \]
       
   477   \[
       
   478   \infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}intro{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isacharminus}\ A\ {\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B}}
       
   479   \qquad
       
   480   \infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}elim{\isacharparenright}}]{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymunion}\ {\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ B}}{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B} & \isa{{\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ A}}
       
   481   \]
       
   482   \caption{Primitive inferences of Pure}\label{fig:prim-rules}
       
   483   \end{center}
       
   484   \end{figure}
       
   485 
       
   486   \begin{figure}[htb]
       
   487   \begin{center}
       
   488   \begin{tabular}{ll}
       
   489   \isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}{\isacharparenright}\ a\ {\isasymequiv}\ b{\isacharbrackleft}a{\isacharbrackright}} & \isa{{\isasymbeta}}-conversion \\
       
   490   \isa{{\isasymturnstile}\ x\ {\isasymequiv}\ x} & reflexivity \\
       
   491   \isa{{\isasymturnstile}\ x\ {\isasymequiv}\ y\ {\isasymLongrightarrow}\ P\ x\ {\isasymLongrightarrow}\ P\ y} & substitution \\
       
   492   \isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ f\ x\ {\isasymequiv}\ g\ x{\isacharparenright}\ {\isasymLongrightarrow}\ f\ {\isasymequiv}\ g} & extensionality \\
       
   493   \isa{{\isasymturnstile}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}B\ {\isasymLongrightarrow}\ A{\isacharparenright}\ {\isasymLongrightarrow}\ A\ {\isasymequiv}\ B} & logical equivalence \\
       
   494   \end{tabular}
       
   495   \caption{Conceptual axiomatization of Pure equality}\label{fig:pure-equality}
       
   496   \end{center}
       
   497   \end{figure}
       
   498 
       
   499   The introduction and elimination rules for \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} are analogous to formation of dependently typed \isa{{\isasymlambda}}-terms representing the underlying proof objects.  Proof terms
       
   500   are irrelevant in the Pure logic, though; they cannot occur within
       
   501   propositions.  The system provides a runtime option to record
       
   502   explicit proof terms for primitive inferences.  Thus all three
       
   503   levels of \isa{{\isasymlambda}}-calculus become explicit: \isa{{\isasymRightarrow}} for
       
   504   terms, and \isa{{\isasymAnd}{\isacharslash}{\isasymLongrightarrow}} for proofs (cf.\
       
   505   \cite{Berghofer-Nipkow:2000:TPHOL}).
       
   506 
       
   507   Observe that locally fixed parameters (as in \isa{{\isasymAnd}{\isacharunderscore}intro}) need
       
   508   not be recorded in the hypotheses, because the simple syntactic
       
   509   types of Pure are always inhabitable.  ``Assumptions'' \isa{x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} for type-membership are only present as long as some \isa{x\isactrlisub {\isasymtau}} occurs in the statement body.\footnote{This is the key
       
   510   difference to ``\isa{{\isasymlambda}HOL}'' in the PTS framework
       
   511   \cite{Barendregt-Geuvers:2001}, where hypotheses \isa{x\ {\isacharcolon}\ A} are
       
   512   treated uniformly for propositions and types.}
       
   513 
       
   514   \medskip The axiomatization of a theory is implicitly closed by
       
   515   forming all instances of type and term variables: \isa{{\isasymturnstile}\ A{\isasymvartheta}} holds for any substitution instance of an axiom
       
   516   \isa{{\isasymturnstile}\ A}.  By pushing substitutions through derivations
       
   517   inductively, we also get admissible \isa{generalize} and \isa{instance} rules as shown in \figref{fig:subst-rules}.
       
   518 
       
   519   \begin{figure}[htb]
       
   520   \begin{center}
       
   521   \[
       
   522   \infer{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}{\isasymalpha}{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} & \isa{{\isasymalpha}\ {\isasymnotin}\ {\isasymGamma}}}
       
   523   \quad
       
   524   \infer[\quad\isa{{\isacharparenleft}generalize{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}x{\isacharbrackright}} & \isa{x\ {\isasymnotin}\ {\isasymGamma}}}
       
   525   \]
       
   526   \[
       
   527   \infer{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isasymtau}{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}{\isasymalpha}{\isacharbrackright}}}
       
   528   \quad
       
   529   \infer[\quad\isa{{\isacharparenleft}instantiate{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}t{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}}}
       
   530   \]
       
   531   \caption{Admissible substitution rules}\label{fig:subst-rules}
       
   532   \end{center}
       
   533   \end{figure}
       
   534 
       
   535   Note that \isa{instantiate} does not require an explicit
       
   536   side-condition, because \isa{{\isasymGamma}} may never contain schematic
       
   537   variables.
       
   538 
       
   539   In principle, variables could be substituted in hypotheses as well,
       
   540   but this would disrupt the monotonicity of reasoning: deriving
       
   541   \isa{{\isasymGamma}{\isasymvartheta}\ {\isasymturnstile}\ B{\isasymvartheta}} from \isa{{\isasymGamma}\ {\isasymturnstile}\ B} is
       
   542   correct, but \isa{{\isasymGamma}{\isasymvartheta}\ {\isasymsupseteq}\ {\isasymGamma}} does not necessarily hold:
       
   543   the result belongs to a different proof context.
       
   544 
       
   545   \medskip An \emph{oracle} is a function that produces axioms on the
       
   546   fly.  Logically, this is an instance of the \isa{axiom} rule
       
   547   (\figref{fig:prim-rules}), but there is an operational difference.
       
   548   The system always records oracle invocations within derivations of
       
   549   theorems.  Tracing plain axioms (and named theorems) is optional.
       
   550 
       
   551   Axiomatizations should be limited to the bare minimum, typically as
       
   552   part of the initial logical basis of an object-logic formalization.
       
   553   Later on, theories are usually developed in a strictly definitional
       
   554   fashion, by stating only certain equalities over new constants.
       
   555 
       
   556   A \emph{simple definition} consists of a constant declaration \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} together with an axiom \isa{{\isasymturnstile}\ c\ {\isasymequiv}\ t}, where \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} is a closed term without any hidden polymorphism.  The RHS
       
   557   may depend on further defined constants, but not \isa{c} itself.
       
   558   Definitions of functions may be presented as \isa{c\ \isactrlvec x\ {\isasymequiv}\ t} instead of the puristic \isa{c\ {\isasymequiv}\ {\isasymlambda}\isactrlvec x{\isachardot}\ t}.
       
   559 
       
   560   An \emph{overloaded definition} consists of a collection of axioms
       
   561   for the same constant, with zero or one equations \isa{c{\isacharparenleft}{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}{\isacharparenright}\ {\isasymequiv}\ t} for each type constructor \isa{{\isasymkappa}} (for
       
   562   distinct variables \isa{\isactrlvec {\isasymalpha}}).  The RHS may mention
       
   563   previously defined constants as above, or arbitrary constants \isa{d{\isacharparenleft}{\isasymalpha}\isactrlisub i{\isacharparenright}} for some \isa{{\isasymalpha}\isactrlisub i} projected from \isa{\isactrlvec {\isasymalpha}}.  Thus overloaded definitions essentially work by
       
   564   primitive recursion over the syntactic structure of a single type
       
   565   argument.%
       
   566 \end{isamarkuptext}%
       
   567 \isamarkuptrue%
       
   568 %
       
   569 \isadelimmlref
       
   570 %
       
   571 \endisadelimmlref
       
   572 %
       
   573 \isatagmlref
       
   574 %
       
   575 \begin{isamarkuptext}%
       
   576 \begin{mldecls}
       
   577   \indexmltype{ctyp}\verb|type ctyp| \\
       
   578   \indexmltype{cterm}\verb|type cterm| \\
       
   579   \indexml{Thm.ctyp\_of}\verb|Thm.ctyp_of: theory -> typ -> ctyp| \\
       
   580   \indexml{Thm.cterm\_of}\verb|Thm.cterm_of: theory -> term -> cterm| \\
       
   581   \end{mldecls}
       
   582   \begin{mldecls}
       
   583   \indexmltype{thm}\verb|type thm| \\
       
   584   \indexml{proofs}\verb|proofs: int ref| \\
       
   585   \indexml{Thm.assume}\verb|Thm.assume: cterm -> thm| \\
       
   586   \indexml{Thm.forall\_intr}\verb|Thm.forall_intr: cterm -> thm -> thm| \\
       
   587   \indexml{Thm.forall\_elim}\verb|Thm.forall_elim: cterm -> thm -> thm| \\
       
   588   \indexml{Thm.implies\_intr}\verb|Thm.implies_intr: cterm -> thm -> thm| \\
       
   589   \indexml{Thm.implies\_elim}\verb|Thm.implies_elim: thm -> thm -> thm| \\
       
   590   \indexml{Thm.generalize}\verb|Thm.generalize: string list * string list -> int -> thm -> thm| \\
       
   591   \indexml{Thm.instantiate}\verb|Thm.instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm| \\
       
   592   \indexml{Thm.axiom}\verb|Thm.axiom: theory -> string -> thm| \\
       
   593   \indexml{Thm.add\_oracle}\verb|Thm.add_oracle: bstring * ('a -> cterm) -> theory|\isasep\isanewline%
       
   594 \verb|  -> (string * ('a -> thm)) * theory| \\
       
   595   \end{mldecls}
       
   596   \begin{mldecls}
       
   597   \indexml{Theory.add\_axioms\_i}\verb|Theory.add_axioms_i: (binding * term) list -> theory -> theory| \\
       
   598   \indexml{Theory.add\_deps}\verb|Theory.add_deps: string -> string * typ -> (string * typ) list -> theory -> theory| \\
       
   599   \indexml{Theory.add\_defs\_i}\verb|Theory.add_defs_i: bool -> bool -> (binding * term) list -> theory -> theory| \\
       
   600   \end{mldecls}
       
   601 
       
   602   \begin{description}
       
   603 
       
   604   \item \verb|ctyp| and \verb|cterm| represent certified types
       
   605   and terms, respectively.  These are abstract datatypes that
       
   606   guarantee that its values have passed the full well-formedness (and
       
   607   well-typedness) checks, relative to the declarations of type
       
   608   constructors, constants etc. in the theory.
       
   609 
       
   610   \item \verb|ctyp_of|~\isa{thy\ {\isasymtau}} and \verb|cterm_of|~\isa{thy\ t} explicitly checks types and terms, respectively.  This also
       
   611   involves some basic normalizations, such expansion of type and term
       
   612   abbreviations from the theory context.
       
   613 
       
   614   Re-certification is relatively slow and should be avoided in tight
       
   615   reasoning loops.  There are separate operations to decompose
       
   616   certified entities (including actual theorems).
       
   617 
       
   618   \item \verb|thm| represents proven propositions.  This is an
       
   619   abstract datatype that guarantees that its values have been
       
   620   constructed by basic principles of the \verb|Thm| module.
       
   621   Every \verb|thm| value contains a sliding back-reference to the
       
   622   enclosing theory, cf.\ \secref{sec:context-theory}.
       
   623 
       
   624   \item \verb|proofs| determines the detail of proof recording within
       
   625   \verb|thm| values: \verb|0| records only oracles, \verb|1| records
       
   626   oracles, axioms and named theorems, \verb|2| records full proof
       
   627   terms.
       
   628 
       
   629   \item \verb|Thm.assume|, \verb|Thm.forall_intr|, \verb|Thm.forall_elim|, \verb|Thm.implies_intr|, and \verb|Thm.implies_elim|
       
   630   correspond to the primitive inferences of \figref{fig:prim-rules}.
       
   631 
       
   632   \item \verb|Thm.generalize|~\isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharcomma}\ \isactrlvec x{\isacharparenright}}
       
   633   corresponds to the \isa{generalize} rules of
       
   634   \figref{fig:subst-rules}.  Here collections of type and term
       
   635   variables are generalized simultaneously, specified by the given
       
   636   basic names.
       
   637 
       
   638   \item \verb|Thm.instantiate|~\isa{{\isacharparenleft}\isactrlvec {\isasymalpha}\isactrlisub s{\isacharcomma}\ \isactrlvec x\isactrlisub {\isasymtau}{\isacharparenright}} corresponds to the \isa{instantiate} rules
       
   639   of \figref{fig:subst-rules}.  Type variables are substituted before
       
   640   term variables.  Note that the types in \isa{\isactrlvec x\isactrlisub {\isasymtau}}
       
   641   refer to the instantiated versions.
       
   642 
       
   643   \item \verb|Thm.axiom|~\isa{thy\ name} retrieves a named
       
   644   axiom, cf.\ \isa{axiom} in \figref{fig:prim-rules}.
       
   645 
       
   646   \item \verb|Thm.add_oracle|~\isa{{\isacharparenleft}name{\isacharcomma}\ oracle{\isacharparenright}} produces a named
       
   647   oracle rule, essentially generating arbitrary axioms on the fly,
       
   648   cf.\ \isa{axiom} in \figref{fig:prim-rules}.
       
   649 
       
   650   \item \verb|Theory.add_axioms_i|~\isa{{\isacharbrackleft}{\isacharparenleft}name{\isacharcomma}\ A{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} declares
       
   651   arbitrary propositions as axioms.
       
   652 
       
   653   \item \verb|Theory.add_deps|~\isa{name\ c\isactrlisub {\isasymtau}\ \isactrlvec d\isactrlisub {\isasymsigma}} declares dependencies of a named specification
       
   654   for constant \isa{c\isactrlisub {\isasymtau}}, relative to existing
       
   655   specifications for constants \isa{\isactrlvec d\isactrlisub {\isasymsigma}}.
       
   656 
       
   657   \item \verb|Theory.add_defs_i|~\isa{unchecked\ overloaded\ {\isacharbrackleft}{\isacharparenleft}name{\isacharcomma}\ c\ \isactrlvec x\ {\isasymequiv}\ t{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} states a definitional axiom for an existing
       
   658   constant \isa{c}.  Dependencies are recorded (cf.\ \verb|Theory.add_deps|), unless the \isa{unchecked} option is set.
       
   659 
       
   660   \end{description}%
       
   661 \end{isamarkuptext}%
       
   662 \isamarkuptrue%
       
   663 %
       
   664 \endisatagmlref
       
   665 {\isafoldmlref}%
       
   666 %
       
   667 \isadelimmlref
       
   668 %
       
   669 \endisadelimmlref
       
   670 %
       
   671 \isamarkupsubsection{Auxiliary definitions%
       
   672 }
       
   673 \isamarkuptrue%
       
   674 %
       
   675 \begin{isamarkuptext}%
       
   676 Theory \isa{Pure} provides a few auxiliary definitions, see
       
   677   \figref{fig:pure-aux}.  These special constants are normally not
       
   678   exposed to the user, but appear in internal encodings.
       
   679 
       
   680   \begin{figure}[htb]
       
   681   \begin{center}
       
   682   \begin{tabular}{ll}
       
   683   \isa{conjunction\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & (infix \isa{{\isacharampersand}}) \\
       
   684   \isa{{\isasymturnstile}\ A\ {\isacharampersand}\ B\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}C{\isachardot}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ C{\isacharparenright}\ {\isasymLongrightarrow}\ C{\isacharparenright}} \\[1ex]
       
   685   \isa{prop\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop} & (prefix \isa{{\isacharhash}}, suppressed) \\
       
   686   \isa{{\isacharhash}A\ {\isasymequiv}\ A} \\[1ex]
       
   687   \isa{term\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & (prefix \isa{TERM}) \\
       
   688   \isa{term\ x\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}A{\isachardot}\ A\ {\isasymLongrightarrow}\ A{\isacharparenright}} \\[1ex]
       
   689   \isa{TYPE\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ itself} & (prefix \isa{TYPE}) \\
       
   690   \isa{{\isacharparenleft}unspecified{\isacharparenright}} \\
       
   691   \end{tabular}
       
   692   \caption{Definitions of auxiliary connectives}\label{fig:pure-aux}
       
   693   \end{center}
       
   694   \end{figure}
       
   695 
       
   696   Derived conjunction rules include introduction \isa{A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ A\ {\isacharampersand}\ B}, and destructions \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ A} and \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ B}.
       
   697   Conjunction allows to treat simultaneous assumptions and conclusions
       
   698   uniformly.  For example, multiple claims are intermediately
       
   699   represented as explicit conjunction, but this is refined into
       
   700   separate sub-goals before the user continues the proof; the final
       
   701   result is projected into a list of theorems (cf.\
       
   702   \secref{sec:tactical-goals}).
       
   703 
       
   704   The \isa{prop} marker (\isa{{\isacharhash}}) makes arbitrarily complex
       
   705   propositions appear as atomic, without changing the meaning: \isa{{\isasymGamma}\ {\isasymturnstile}\ A} and \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isacharhash}A} are interchangeable.  See
       
   706   \secref{sec:tactical-goals} for specific operations.
       
   707 
       
   708   The \isa{term} marker turns any well-typed term into a derivable
       
   709   proposition: \isa{{\isasymturnstile}\ TERM\ t} holds unconditionally.  Although
       
   710   this is logically vacuous, it allows to treat terms and proofs
       
   711   uniformly, similar to a type-theoretic framework.
       
   712 
       
   713   The \isa{TYPE} constructor is the canonical representative of
       
   714   the unspecified type \isa{{\isasymalpha}\ itself}; it essentially injects the
       
   715   language of types into that of terms.  There is specific notation
       
   716   \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} for \isa{TYPE\isactrlbsub {\isasymtau}\ itself\isactrlesub }.
       
   717   Although being devoid of any particular meaning, the \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} accounts for the type \isa{{\isasymtau}} within the term
       
   718   language.  In particular, \isa{TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}} may be used as formal
       
   719   argument in primitive definitions, in order to circumvent hidden
       
   720   polymorphism (cf.\ \secref{sec:terms}).  For example, \isa{c\ TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}\ {\isasymequiv}\ A{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} defines \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ itself\ {\isasymRightarrow}\ prop} in terms of
       
   721   a proposition \isa{A} that depends on an additional type
       
   722   argument, which is essentially a predicate on types.%
       
   723 \end{isamarkuptext}%
       
   724 \isamarkuptrue%
       
   725 %
       
   726 \isadelimmlref
       
   727 %
       
   728 \endisadelimmlref
       
   729 %
       
   730 \isatagmlref
       
   731 %
       
   732 \begin{isamarkuptext}%
       
   733 \begin{mldecls}
       
   734   \indexml{Conjunction.intr}\verb|Conjunction.intr: thm -> thm -> thm| \\
       
   735   \indexml{Conjunction.elim}\verb|Conjunction.elim: thm -> thm * thm| \\
       
   736   \indexml{Drule.mk\_term}\verb|Drule.mk_term: cterm -> thm| \\
       
   737   \indexml{Drule.dest\_term}\verb|Drule.dest_term: thm -> cterm| \\
       
   738   \indexml{Logic.mk\_type}\verb|Logic.mk_type: typ -> term| \\
       
   739   \indexml{Logic.dest\_type}\verb|Logic.dest_type: term -> typ| \\
       
   740   \end{mldecls}
       
   741 
       
   742   \begin{description}
       
   743 
       
   744   \item \verb|Conjunction.intr| derives \isa{A\ {\isacharampersand}\ B} from \isa{A} and \isa{B}.
       
   745 
       
   746   \item \verb|Conjunction.elim| derives \isa{A} and \isa{B}
       
   747   from \isa{A\ {\isacharampersand}\ B}.
       
   748 
       
   749   \item \verb|Drule.mk_term| derives \isa{TERM\ t}.
       
   750 
       
   751   \item \verb|Drule.dest_term| recovers term \isa{t} from \isa{TERM\ t}.
       
   752 
       
   753   \item \verb|Logic.mk_type|~\isa{{\isasymtau}} produces the term \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}}.
       
   754 
       
   755   \item \verb|Logic.dest_type|~\isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} recovers the type
       
   756   \isa{{\isasymtau}}.
       
   757 
       
   758   \end{description}%
       
   759 \end{isamarkuptext}%
       
   760 \isamarkuptrue%
       
   761 %
       
   762 \endisatagmlref
       
   763 {\isafoldmlref}%
       
   764 %
       
   765 \isadelimmlref
       
   766 %
       
   767 \endisadelimmlref
       
   768 %
       
   769 \isamarkupsection{Object-level rules \label{sec:obj-rules}%
       
   770 }
       
   771 \isamarkuptrue%
       
   772 %
       
   773 \isadelimFIXME
       
   774 %
       
   775 \endisadelimFIXME
       
   776 %
       
   777 \isatagFIXME
       
   778 %
       
   779 \begin{isamarkuptext}%
       
   780 FIXME
       
   781 
       
   782   A \emph{rule} is any Pure theorem in HHF normal form; there is a
       
   783   separate calculus for rule composition, which is modeled after
       
   784   Gentzen's Natural Deduction \cite{Gentzen:1935}, but allows
       
   785   rules to be nested arbitrarily, similar to \cite{extensions91}.
       
   786 
       
   787   Normally, all theorems accessible to the user are proper rules.
       
   788   Low-level inferences are occasional required internally, but the
       
   789   result should be always presented in canonical form.  The higher
       
   790   interfaces of Isabelle/Isar will always produce proper rules.  It is
       
   791   important to maintain this invariant in add-on applications!
       
   792 
       
   793   There are two main principles of rule composition: \isa{resolution} (i.e.\ backchaining of rules) and \isa{by{\isacharminus}assumption} (i.e.\ closing a branch); both principles are
       
   794   combined in the variants of \isa{elim{\isacharminus}resolution} and \isa{dest{\isacharminus}resolution}.  Raw \isa{composition} is occasionally
       
   795   useful as well, also it is strictly speaking outside of the proper
       
   796   rule calculus.
       
   797 
       
   798   Rules are treated modulo general higher-order unification, which is
       
   799   unification modulo the equational theory of \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion
       
   800   on \isa{{\isasymlambda}}-terms.  Moreover, propositions are understood modulo
       
   801   the (derived) equivalence \isa{{\isacharparenleft}A\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ B\ x{\isacharparenright}{\isacharparenright}\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ A\ {\isasymLongrightarrow}\ B\ x{\isacharparenright}}.
       
   802 
       
   803   This means that any operations within the rule calculus may be
       
   804   subject to spontaneous \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-HHF conversions.  It is common
       
   805   practice not to contract or expand unnecessarily.  Some mechanisms
       
   806   prefer an one form, others the opposite, so there is a potential
       
   807   danger to produce some oscillation!
       
   808 
       
   809   Only few operations really work \emph{modulo} HHF conversion, but
       
   810   expect a normal form: quantifiers \isa{{\isasymAnd}} before implications
       
   811   \isa{{\isasymLongrightarrow}} at each level of nesting.
       
   812 
       
   813 \glossary{Hereditary Harrop Formula}{The set of propositions in HHF
       
   814 format is defined inductively as \isa{H\ {\isacharequal}\ {\isacharparenleft}{\isasymAnd}x\isactrlsup {\isacharasterisk}{\isachardot}\ H\isactrlsup {\isacharasterisk}\ {\isasymLongrightarrow}\ A{\isacharparenright}}, for variables \isa{x} and atomic propositions \isa{A}.
       
   815 Any proposition may be put into HHF form by normalizing with the rule
       
   816 \isa{{\isacharparenleft}A\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ B\ x{\isacharparenright}{\isacharparenright}\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ A\ {\isasymLongrightarrow}\ B\ x{\isacharparenright}}.  In Isabelle, the outermost
       
   817 quantifier prefix is represented via \seeglossary{schematic
       
   818 variables}, such that the top-level structure is merely that of a
       
   819 \seeglossary{Horn Clause}}.
       
   820 
       
   821 \glossary{HHF}{See \seeglossary{Hereditary Harrop Formula}.}
       
   822 
       
   823 
       
   824   \[
       
   825   \infer[\isa{{\isacharparenleft}assumption{\isacharparenright}}]{\isa{C{\isasymvartheta}}}
       
   826   {\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ A\ \isactrlvec x{\isacharparenright}\ {\isasymLongrightarrow}\ C} & \isa{A{\isasymvartheta}\ {\isacharequal}\ H\isactrlsub i{\isasymvartheta}}~~\text{(for some~\isa{i})}}
       
   827   \]
       
   828 
       
   829 
       
   830   \[
       
   831   \infer[\isa{{\isacharparenleft}compose{\isacharparenright}}]{\isa{\isactrlvec A{\isasymvartheta}\ {\isasymLongrightarrow}\ C{\isasymvartheta}}}
       
   832   {\isa{\isactrlvec A\ {\isasymLongrightarrow}\ B} & \isa{B{\isacharprime}\ {\isasymLongrightarrow}\ C} & \isa{B{\isasymvartheta}\ {\isacharequal}\ B{\isacharprime}{\isasymvartheta}}}
       
   833   \]
       
   834 
       
   835 
       
   836   \[
       
   837   \infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}lift{\isacharparenright}}]{\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec A\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ B\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}}}{\isa{\isactrlvec A\ {\isacharquery}\isactrlvec a\ {\isasymLongrightarrow}\ B\ {\isacharquery}\isactrlvec a}}
       
   838   \]
       
   839   \[
       
   840   \infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}lift{\isacharparenright}}]{\isa{{\isacharparenleft}\isactrlvec H\ {\isasymLongrightarrow}\ \isactrlvec A{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}\isactrlvec H\ {\isasymLongrightarrow}\ B{\isacharparenright}}}{\isa{\isactrlvec A\ {\isasymLongrightarrow}\ B}}
       
   841   \]
       
   842 
       
   843   The \isa{resolve} scheme is now acquired from \isa{{\isasymAnd}{\isacharunderscore}lift},
       
   844   \isa{{\isasymLongrightarrow}{\isacharunderscore}lift}, and \isa{compose}.
       
   845 
       
   846   \[
       
   847   \infer[\isa{{\isacharparenleft}resolution{\isacharparenright}}]
       
   848   {\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ \isactrlvec A\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}{\isasymvartheta}\ {\isasymLongrightarrow}\ C{\isasymvartheta}}}
       
   849   {\begin{tabular}{l}
       
   850     \isa{\isactrlvec A\ {\isacharquery}\isactrlvec a\ {\isasymLongrightarrow}\ B\ {\isacharquery}\isactrlvec a} \\
       
   851     \isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ B{\isacharprime}\ \isactrlvec x{\isacharparenright}\ {\isasymLongrightarrow}\ C} \\
       
   852     \isa{{\isacharparenleft}{\isasymlambda}\isactrlvec x{\isachardot}\ B\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}{\isasymvartheta}\ {\isacharequal}\ B{\isacharprime}{\isasymvartheta}} \\
       
   853    \end{tabular}}
       
   854   \]
       
   855 
       
   856 
       
   857   FIXME \isa{elim{\isacharunderscore}resolution}, \isa{dest{\isacharunderscore}resolution}%
       
   858 \end{isamarkuptext}%
       
   859 \isamarkuptrue%
       
   860 %
       
   861 \endisatagFIXME
       
   862 {\isafoldFIXME}%
       
   863 %
       
   864 \isadelimFIXME
       
   865 %
       
   866 \endisadelimFIXME
       
   867 %
       
   868 \isadelimtheory
       
   869 %
       
   870 \endisadelimtheory
       
   871 %
       
   872 \isatagtheory
       
   873 \isacommand{end}\isamarkupfalse%
       
   874 %
       
   875 \endisatagtheory
       
   876 {\isafoldtheory}%
       
   877 %
       
   878 \isadelimtheory
       
   879 %
       
   880 \endisadelimtheory
       
   881 \isanewline
       
   882 \end{isabellebody}%
       
   883 %%% Local Variables:
       
   884 %%% mode: latex
       
   885 %%% TeX-master: "root"
       
   886 %%% End: