src/FOL/ex/NatClass.thy
changeset 30130 e23770bc97c8
parent 30129 419116f1157a
parent 30114 0726792e1726
child 30131 6be1be402ef0
equal deleted inserted replaced
30129:419116f1157a 30130:e23770bc97c8
     1 (*  Title:      FOL/ex/NatClass.thy
       
     2     ID:         $Id$
       
     3     Author:     Markus Wenzel, TU Muenchen
       
     4 *)
       
     5 
       
     6 theory NatClass
       
     7 imports FOL
       
     8 begin
       
     9 
       
    10 text {*
       
    11   This is an abstract version of theory @{text "Nat"}. Instead of
       
    12   axiomatizing a single type @{text nat} we define the class of all
       
    13   these types (up to isomorphism).
       
    14 
       
    15   Note: The @{text rec} operator had to be made \emph{monomorphic},
       
    16   because class axioms may not contain more than one type variable.
       
    17 *}
       
    18 
       
    19 consts
       
    20   0 :: 'a    ("0")
       
    21   Suc :: "'a => 'a"
       
    22   rec :: "['a, 'a, ['a, 'a] => 'a] => 'a"
       
    23 
       
    24 axclass
       
    25   nat < "term"
       
    26   induct:        "[| P(0); !!x. P(x) ==> P(Suc(x)) |] ==> P(n)"
       
    27   Suc_inject:    "Suc(m) = Suc(n) ==> m = n"
       
    28   Suc_neq_0:     "Suc(m) = 0 ==> R"
       
    29   rec_0:         "rec(0, a, f) = a"
       
    30   rec_Suc:       "rec(Suc(m), a, f) = f(m, rec(m, a, f))"
       
    31 
       
    32 definition
       
    33   add :: "['a::nat, 'a] => 'a"  (infixl "+" 60) where
       
    34   "m + n = rec(m, n, %x y. Suc(y))"
       
    35 
       
    36 lemma Suc_n_not_n: "Suc(k) ~= (k::'a::nat)"
       
    37 apply (rule_tac n = k in induct)
       
    38 apply (rule notI)
       
    39 apply (erule Suc_neq_0)
       
    40 apply (rule notI)
       
    41 apply (erule notE)
       
    42 apply (erule Suc_inject)
       
    43 done
       
    44 
       
    45 lemma "(k+m)+n = k+(m+n)"
       
    46 apply (rule induct)
       
    47 back
       
    48 back
       
    49 back
       
    50 back
       
    51 back
       
    52 back
       
    53 oops
       
    54 
       
    55 lemma add_0 [simp]: "0+n = n"
       
    56 apply (unfold add_def)
       
    57 apply (rule rec_0)
       
    58 done
       
    59 
       
    60 lemma add_Suc [simp]: "Suc(m)+n = Suc(m+n)"
       
    61 apply (unfold add_def)
       
    62 apply (rule rec_Suc)
       
    63 done
       
    64 
       
    65 lemma add_assoc: "(k+m)+n = k+(m+n)"
       
    66 apply (rule_tac n = k in induct)
       
    67 apply simp
       
    68 apply simp
       
    69 done
       
    70 
       
    71 lemma add_0_right: "m+0 = m"
       
    72 apply (rule_tac n = m in induct)
       
    73 apply simp
       
    74 apply simp
       
    75 done
       
    76 
       
    77 lemma add_Suc_right: "m+Suc(n) = Suc(m+n)"
       
    78 apply (rule_tac n = m in induct)
       
    79 apply simp_all
       
    80 done
       
    81 
       
    82 lemma
       
    83   assumes prem: "!!n. f(Suc(n)) = Suc(f(n))"
       
    84   shows "f(i+j) = i+f(j)"
       
    85 apply (rule_tac n = i in induct)
       
    86 apply simp
       
    87 apply (simp add: prem)
       
    88 done
       
    89 
       
    90 end