src/HOL/AxClasses/Group.thy
changeset 30130 e23770bc97c8
parent 30129 419116f1157a
parent 30114 0726792e1726
child 30131 6be1be402ef0
equal deleted inserted replaced
30129:419116f1157a 30130:e23770bc97c8
     1 (*  Title:      HOL/AxClasses/Group.thy
       
     2     ID:         $Id$
       
     3     Author:     Markus Wenzel, TU Muenchen
       
     4 *)
       
     5 
       
     6 theory Group imports Main begin
       
     7 
       
     8 subsection {* Monoids and Groups *}
       
     9 
       
    10 consts
       
    11   times :: "'a => 'a => 'a"    (infixl "[*]" 70)
       
    12   invers :: "'a => 'a"
       
    13   one :: 'a
       
    14 
       
    15 
       
    16 axclass monoid < type
       
    17   assoc:      "(x [*] y) [*] z = x [*] (y [*] z)"
       
    18   left_unit:  "one [*] x = x"
       
    19   right_unit: "x [*] one = x"
       
    20 
       
    21 axclass semigroup < type
       
    22   assoc: "(x [*] y) [*] z = x [*] (y [*] z)"
       
    23 
       
    24 axclass group < semigroup
       
    25   left_unit:    "one [*] x = x"
       
    26   left_inverse: "invers x [*] x = one"
       
    27 
       
    28 axclass agroup < group
       
    29   commute: "x [*] y = y [*] x"
       
    30 
       
    31 
       
    32 subsection {* Abstract reasoning *}
       
    33 
       
    34 theorem group_right_inverse: "x [*] invers x = (one::'a::group)"
       
    35 proof -
       
    36   have "x [*] invers x = one [*] (x [*] invers x)"
       
    37     by (simp only: group_class.left_unit)
       
    38   also have "... = one [*] x [*] invers x"
       
    39     by (simp only: semigroup_class.assoc)
       
    40   also have "... = invers (invers x) [*] invers x [*] x [*] invers x"
       
    41     by (simp only: group_class.left_inverse)
       
    42   also have "... = invers (invers x) [*] (invers x [*] x) [*] invers x"
       
    43     by (simp only: semigroup_class.assoc)
       
    44   also have "... = invers (invers x) [*] one [*] invers x"
       
    45     by (simp only: group_class.left_inverse)
       
    46   also have "... = invers (invers x) [*] (one [*] invers x)"
       
    47     by (simp only: semigroup_class.assoc)
       
    48   also have "... = invers (invers x) [*] invers x"
       
    49     by (simp only: group_class.left_unit)
       
    50   also have "... = one"
       
    51     by (simp only: group_class.left_inverse)
       
    52   finally show ?thesis .
       
    53 qed
       
    54 
       
    55 theorem group_right_unit: "x [*] one = (x::'a::group)"
       
    56 proof -
       
    57   have "x [*] one = x [*] (invers x [*] x)"
       
    58     by (simp only: group_class.left_inverse)
       
    59   also have "... = x [*] invers x [*] x"
       
    60     by (simp only: semigroup_class.assoc)
       
    61   also have "... = one [*] x"
       
    62     by (simp only: group_right_inverse)
       
    63   also have "... = x"
       
    64     by (simp only: group_class.left_unit)
       
    65   finally show ?thesis .
       
    66 qed
       
    67 
       
    68 
       
    69 subsection {* Abstract instantiation *}
       
    70 
       
    71 instance monoid < semigroup
       
    72 proof intro_classes
       
    73   fix x y z :: "'a::monoid"
       
    74   show "x [*] y [*] z = x [*] (y [*] z)"
       
    75     by (rule monoid_class.assoc)
       
    76 qed
       
    77 
       
    78 instance group < monoid
       
    79 proof intro_classes
       
    80   fix x y z :: "'a::group"
       
    81   show "x [*] y [*] z = x [*] (y [*] z)"
       
    82     by (rule semigroup_class.assoc)
       
    83   show "one [*] x = x"
       
    84     by (rule group_class.left_unit)
       
    85   show "x [*] one = x"
       
    86     by (rule group_right_unit)
       
    87 qed
       
    88 
       
    89 
       
    90 subsection {* Concrete instantiation *}
       
    91 
       
    92 defs (overloaded)
       
    93   times_bool_def:   "x [*] y == x ~= (y::bool)"
       
    94   inverse_bool_def: "invers x == x::bool"
       
    95   unit_bool_def:    "one == False"
       
    96 
       
    97 instance bool :: agroup
       
    98 proof (intro_classes,
       
    99     unfold times_bool_def inverse_bool_def unit_bool_def)
       
   100   fix x y z
       
   101   show "((x ~= y) ~= z) = (x ~= (y ~= z))" by blast
       
   102   show "(False ~= x) = x" by blast
       
   103   show "(x ~= x) = False" by blast
       
   104   show "(x ~= y) = (y ~= x)" by blast
       
   105 qed
       
   106 
       
   107 
       
   108 subsection {* Lifting and Functors *}
       
   109 
       
   110 defs (overloaded)
       
   111   times_prod_def: "p [*] q == (fst p [*] fst q, snd p [*] snd q)"
       
   112 
       
   113 instance * :: (semigroup, semigroup) semigroup
       
   114 proof (intro_classes, unfold times_prod_def)
       
   115   fix p q r :: "'a::semigroup * 'b::semigroup"
       
   116   show
       
   117     "(fst (fst p [*] fst q, snd p [*] snd q) [*] fst r,
       
   118       snd (fst p [*] fst q, snd p [*] snd q) [*] snd r) =
       
   119        (fst p [*] fst (fst q [*] fst r, snd q [*] snd r),
       
   120         snd p [*] snd (fst q [*] fst r, snd q [*] snd r))"
       
   121     by (simp add: semigroup_class.assoc)
       
   122 qed
       
   123 
       
   124 end