equal
deleted
inserted
replaced
359 done |
359 done |
360 |
360 |
361 lemma starfun_ln_inverse: "!!x. 0 < x ==> ( *f* ln) (inverse x) = -( *f* ln) x" |
361 lemma starfun_ln_inverse: "!!x. 0 < x ==> ( *f* ln) (inverse x) = -( *f* ln) x" |
362 by (transfer, rule ln_inverse) |
362 by (transfer, rule ln_inverse) |
363 |
363 |
|
364 lemma starfun_abs_exp_cancel: "\<And>x. \<bar>( *f* exp) x\<bar> = ( *f* exp) x" |
|
365 by transfer (rule abs_exp_cancel) |
|
366 |
|
367 lemma starfun_exp_less_mono: "\<And>x y. x < y \<Longrightarrow> ( *f* exp) x < ( *f* exp) y" |
|
368 by transfer (rule exp_less_mono) |
|
369 |
364 lemma starfun_exp_HFinite: "x \<in> HFinite ==> ( *f* exp) x \<in> HFinite" |
370 lemma starfun_exp_HFinite: "x \<in> HFinite ==> ( *f* exp) x \<in> HFinite" |
365 apply (cases x) |
371 apply (auto simp add: HFinite_def, rename_tac u) |
366 apply (auto simp add: starfun HFinite_FreeUltrafilterNat_iff) |
372 apply (rule_tac x="( *f* exp) u" in rev_bexI) |
367 apply (rule_tac x = "exp u" in exI) |
373 apply (simp add: Reals_eq_Standard) |
368 apply ultra |
374 apply (simp add: starfun_abs_exp_cancel) |
|
375 apply (simp add: starfun_exp_less_mono) |
369 done |
376 done |
370 |
377 |
371 lemma starfun_exp_add_HFinite_Infinitesimal_approx: |
378 lemma starfun_exp_add_HFinite_Infinitesimal_approx: |
372 "[|x \<in> Infinitesimal; z \<in> HFinite |] ==> ( *f* exp) (z + x) @= ( *f* exp) z" |
379 "[|x \<in> Infinitesimal; z \<in> HFinite |] ==> ( *f* exp) (z + x) @= ( *f* exp) z" |
373 apply (simp add: STAR_exp_add) |
380 apply (simp add: STAR_exp_add) |