src/ZF/ArithSimp.thy
changeset 76213 e44d86131648
parent 69605 a96320074298
child 76214 0c18df79b1c8
equal deleted inserted replaced
76212:f2094906e491 76213:e44d86131648
    23 
    23 
    24 (**Addition is the inverse of subtraction**)
    24 (**Addition is the inverse of subtraction**)
    25 
    25 
    26 (*We need m:nat even if we replace the RHS by natify(m), for consider e.g.
    26 (*We need m:nat even if we replace the RHS by natify(m), for consider e.g.
    27   n=2, m=omega; then n + (m-n) = 2 + (0-2) = 2 \<noteq> 0 = natify(m).*)
    27   n=2, m=omega; then n + (m-n) = 2 + (0-2) = 2 \<noteq> 0 = natify(m).*)
    28 lemma add_diff_inverse: "[| n \<le> m;  m:nat |] ==> n #+ (m#-n) = m"
    28 lemma add_diff_inverse: "\<lbrakk>n \<le> m;  m:nat\<rbrakk> \<Longrightarrow> n #+ (m#-n) = m"
    29 apply (frule lt_nat_in_nat, erule nat_succI)
    29 apply (frule lt_nat_in_nat, erule nat_succI)
    30 apply (erule rev_mp)
    30 apply (erule rev_mp)
    31 apply (rule_tac m = m and n = n in diff_induct, auto)
    31 apply (rule_tac m = m and n = n in diff_induct, auto)
    32 done
    32 done
    33 
    33 
    34 lemma add_diff_inverse2: "[| n \<le> m;  m:nat |] ==> (m#-n) #+ n = m"
    34 lemma add_diff_inverse2: "\<lbrakk>n \<le> m;  m:nat\<rbrakk> \<Longrightarrow> (m#-n) #+ n = m"
    35 apply (frule lt_nat_in_nat, erule nat_succI)
    35 apply (frule lt_nat_in_nat, erule nat_succI)
    36 apply (simp (no_asm_simp) add: add_commute add_diff_inverse)
    36 apply (simp (no_asm_simp) add: add_commute add_diff_inverse)
    37 done
    37 done
    38 
    38 
    39 (*Proof is IDENTICAL to that of add_diff_inverse*)
    39 (*Proof is IDENTICAL to that of add_diff_inverse*)
    40 lemma diff_succ: "[| n \<le> m;  m:nat |] ==> succ(m) #- n = succ(m#-n)"
    40 lemma diff_succ: "\<lbrakk>n \<le> m;  m:nat\<rbrakk> \<Longrightarrow> succ(m) #- n = succ(m#-n)"
    41 apply (frule lt_nat_in_nat, erule nat_succI)
    41 apply (frule lt_nat_in_nat, erule nat_succI)
    42 apply (erule rev_mp)
    42 apply (erule rev_mp)
    43 apply (rule_tac m = m and n = n in diff_induct)
    43 apply (rule_tac m = m and n = n in diff_induct)
    44 apply (simp_all (no_asm_simp))
    44 apply (simp_all (no_asm_simp))
    45 done
    45 done
    46 
    46 
    47 lemma zero_less_diff [simp]:
    47 lemma zero_less_diff [simp]:
    48      "[| m: nat; n: nat |] ==> 0 < (n #- m)   \<longleftrightarrow>   m<n"
    48      "\<lbrakk>m: nat; n: nat\<rbrakk> \<Longrightarrow> 0 < (n #- m)   \<longleftrightarrow>   m<n"
    49 apply (rule_tac m = m and n = n in diff_induct)
    49 apply (rule_tac m = m and n = n in diff_induct)
    50 apply (simp_all (no_asm_simp))
    50 apply (simp_all (no_asm_simp))
    51 done
    51 done
    52 
    52 
    53 
    53 
    65 
    65 
    66 
    66 
    67 subsection\<open>Remainder\<close>
    67 subsection\<open>Remainder\<close>
    68 
    68 
    69 (*We need m:nat even with natify*)
    69 (*We need m:nat even with natify*)
    70 lemma div_termination: "[| 0<n;  n \<le> m;  m:nat |] ==> m #- n < m"
    70 lemma div_termination: "\<lbrakk>0<n;  n \<le> m;  m:nat\<rbrakk> \<Longrightarrow> m #- n < m"
    71 apply (frule lt_nat_in_nat, erule nat_succI)
    71 apply (frule lt_nat_in_nat, erule nat_succI)
    72 apply (erule rev_mp)
    72 apply (erule rev_mp)
    73 apply (erule rev_mp)
    73 apply (erule rev_mp)
    74 apply (rule_tac m = m and n = n in diff_induct)
    74 apply (rule_tac m = m and n = n in diff_induct)
    75 apply (simp_all (no_asm_simp) add: diff_le_self)
    75 apply (simp_all (no_asm_simp) add: diff_le_self)
    79 lemmas div_rls =
    79 lemmas div_rls =
    80     nat_typechecks Ord_transrec_type apply_funtype
    80     nat_typechecks Ord_transrec_type apply_funtype
    81     div_termination [THEN ltD]
    81     div_termination [THEN ltD]
    82     nat_into_Ord not_lt_iff_le [THEN iffD1]
    82     nat_into_Ord not_lt_iff_le [THEN iffD1]
    83 
    83 
    84 lemma raw_mod_type: "[| m:nat;  n:nat |] ==> raw_mod (m, n) \<in> nat"
    84 lemma raw_mod_type: "\<lbrakk>m:nat;  n:nat\<rbrakk> \<Longrightarrow> raw_mod (m, n) \<in> nat"
    85 apply (unfold raw_mod_def)
    85 apply (unfold raw_mod_def)
    86 apply (rule Ord_transrec_type)
    86 apply (rule Ord_transrec_type)
    87 apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff])
    87 apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff])
    88 apply (blast intro: div_rls)
    88 apply (blast intro: div_rls)
    89 done
    89 done
   107 apply (unfold mod_def)
   107 apply (unfold mod_def)
   108 apply (rule raw_mod_def [THEN def_transrec, THEN trans])
   108 apply (rule raw_mod_def [THEN def_transrec, THEN trans])
   109 apply (simp (no_asm_simp))
   109 apply (simp (no_asm_simp))
   110 done  (*NOT for adding to default simpset*)
   110 done  (*NOT for adding to default simpset*)
   111 
   111 
   112 lemma raw_mod_less: "m<n ==> raw_mod (m,n) = m"
   112 lemma raw_mod_less: "m<n \<Longrightarrow> raw_mod (m,n) = m"
   113 apply (rule raw_mod_def [THEN def_transrec, THEN trans])
   113 apply (rule raw_mod_def [THEN def_transrec, THEN trans])
   114 apply (simp (no_asm_simp) add: div_termination [THEN ltD])
   114 apply (simp (no_asm_simp) add: div_termination [THEN ltD])
   115 done
   115 done
   116 
   116 
   117 lemma mod_less [simp]: "[| m<n; n \<in> nat |] ==> m mod n = m"
   117 lemma mod_less [simp]: "\<lbrakk>m<n; n \<in> nat\<rbrakk> \<Longrightarrow> m mod n = m"
   118 apply (frule lt_nat_in_nat, assumption)
   118 apply (frule lt_nat_in_nat, assumption)
   119 apply (simp (no_asm_simp) add: mod_def raw_mod_less)
   119 apply (simp (no_asm_simp) add: mod_def raw_mod_less)
   120 done
   120 done
   121 
   121 
   122 lemma raw_mod_geq:
   122 lemma raw_mod_geq:
   123      "[| 0<n; n \<le> m;  m:nat |] ==> raw_mod (m, n) = raw_mod (m#-n, n)"
   123      "\<lbrakk>0<n; n \<le> m;  m:nat\<rbrakk> \<Longrightarrow> raw_mod (m, n) = raw_mod (m#-n, n)"
   124 apply (frule lt_nat_in_nat, erule nat_succI)
   124 apply (frule lt_nat_in_nat, erule nat_succI)
   125 apply (rule raw_mod_def [THEN def_transrec, THEN trans])
   125 apply (rule raw_mod_def [THEN def_transrec, THEN trans])
   126 apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2], blast)
   126 apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2], blast)
   127 done
   127 done
   128 
   128 
   129 
   129 
   130 lemma mod_geq: "[| n \<le> m;  m:nat |] ==> m mod n = (m#-n) mod n"
   130 lemma mod_geq: "\<lbrakk>n \<le> m;  m:nat\<rbrakk> \<Longrightarrow> m mod n = (m#-n) mod n"
   131 apply (frule lt_nat_in_nat, erule nat_succI)
   131 apply (frule lt_nat_in_nat, erule nat_succI)
   132 apply (case_tac "n=0")
   132 apply (case_tac "n=0")
   133  apply (simp add: DIVISION_BY_ZERO_MOD)
   133  apply (simp add: DIVISION_BY_ZERO_MOD)
   134 apply (simp add: mod_def raw_mod_geq nat_into_Ord [THEN Ord_0_lt_iff])
   134 apply (simp add: mod_def raw_mod_geq nat_into_Ord [THEN Ord_0_lt_iff])
   135 done
   135 done
   136 
   136 
   137 
   137 
   138 subsection\<open>Division\<close>
   138 subsection\<open>Division\<close>
   139 
   139 
   140 lemma raw_div_type: "[| m:nat;  n:nat |] ==> raw_div (m, n) \<in> nat"
   140 lemma raw_div_type: "\<lbrakk>m:nat;  n:nat\<rbrakk> \<Longrightarrow> raw_div (m, n) \<in> nat"
   141 apply (unfold raw_div_def)
   141 apply (unfold raw_div_def)
   142 apply (rule Ord_transrec_type)
   142 apply (rule Ord_transrec_type)
   143 apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   143 apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   144 apply (blast intro: div_rls)
   144 apply (blast intro: div_rls)
   145 done
   145 done
   147 lemma div_type [TC,iff]: "m div n \<in> nat"
   147 lemma div_type [TC,iff]: "m div n \<in> nat"
   148 apply (unfold div_def)
   148 apply (unfold div_def)
   149 apply (simp (no_asm) add: div_def raw_div_type)
   149 apply (simp (no_asm) add: div_def raw_div_type)
   150 done
   150 done
   151 
   151 
   152 lemma raw_div_less: "m<n ==> raw_div (m,n) = 0"
   152 lemma raw_div_less: "m<n \<Longrightarrow> raw_div (m,n) = 0"
   153 apply (rule raw_div_def [THEN def_transrec, THEN trans])
   153 apply (rule raw_div_def [THEN def_transrec, THEN trans])
   154 apply (simp (no_asm_simp) add: div_termination [THEN ltD])
   154 apply (simp (no_asm_simp) add: div_termination [THEN ltD])
   155 done
   155 done
   156 
   156 
   157 lemma div_less [simp]: "[| m<n; n \<in> nat |] ==> m div n = 0"
   157 lemma div_less [simp]: "\<lbrakk>m<n; n \<in> nat\<rbrakk> \<Longrightarrow> m div n = 0"
   158 apply (frule lt_nat_in_nat, assumption)
   158 apply (frule lt_nat_in_nat, assumption)
   159 apply (simp (no_asm_simp) add: div_def raw_div_less)
   159 apply (simp (no_asm_simp) add: div_def raw_div_less)
   160 done
   160 done
   161 
   161 
   162 lemma raw_div_geq: "[| 0<n;  n \<le> m;  m:nat |] ==> raw_div(m,n) = succ(raw_div(m#-n, n))"
   162 lemma raw_div_geq: "\<lbrakk>0<n;  n \<le> m;  m:nat\<rbrakk> \<Longrightarrow> raw_div(m,n) = succ(raw_div(m#-n, n))"
   163 apply (subgoal_tac "n \<noteq> 0")
   163 apply (subgoal_tac "n \<noteq> 0")
   164 prefer 2 apply blast
   164 prefer 2 apply blast
   165 apply (frule lt_nat_in_nat, erule nat_succI)
   165 apply (frule lt_nat_in_nat, erule nat_succI)
   166 apply (rule raw_div_def [THEN def_transrec, THEN trans])
   166 apply (rule raw_div_def [THEN def_transrec, THEN trans])
   167 apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2] )
   167 apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2] )
   168 done
   168 done
   169 
   169 
   170 lemma div_geq [simp]:
   170 lemma div_geq [simp]:
   171      "[| 0<n;  n \<le> m;  m:nat |] ==> m div n = succ ((m#-n) div n)"
   171      "\<lbrakk>0<n;  n \<le> m;  m:nat\<rbrakk> \<Longrightarrow> m div n = succ ((m#-n) div n)"
   172 apply (frule lt_nat_in_nat, erule nat_succI)
   172 apply (frule lt_nat_in_nat, erule nat_succI)
   173 apply (simp (no_asm_simp) add: div_def raw_div_geq)
   173 apply (simp (no_asm_simp) add: div_def raw_div_geq)
   174 done
   174 done
   175 
   175 
   176 declare div_less [simp] div_geq [simp]
   176 declare div_less [simp] div_geq [simp]
   177 
   177 
   178 
   178 
   179 (*A key result*)
   179 (*A key result*)
   180 lemma mod_div_lemma: "[| m: nat;  n: nat |] ==> (m div n)#*n #+ m mod n = m"
   180 lemma mod_div_lemma: "\<lbrakk>m: nat;  n: nat\<rbrakk> \<Longrightarrow> (m div n)#*n #+ m mod n = m"
   181 apply (case_tac "n=0")
   181 apply (case_tac "n=0")
   182  apply (simp add: DIVISION_BY_ZERO_MOD)
   182  apply (simp add: DIVISION_BY_ZERO_MOD)
   183 apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   183 apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   184 apply (erule complete_induct)
   184 apply (erule complete_induct)
   185 apply (case_tac "x<n")
   185 apply (case_tac "x<n")
   193 apply (subgoal_tac " (natify (m) div natify (n))#*natify (n) #+ natify (m) mod natify (n) = natify (m) ")
   193 apply (subgoal_tac " (natify (m) div natify (n))#*natify (n) #+ natify (m) mod natify (n) = natify (m) ")
   194 apply force
   194 apply force
   195 apply (subst mod_div_lemma, auto)
   195 apply (subst mod_div_lemma, auto)
   196 done
   196 done
   197 
   197 
   198 lemma mod_div_equality: "m: nat ==> (m div n)#*n #+ m mod n = m"
   198 lemma mod_div_equality: "m: nat \<Longrightarrow> (m div n)#*n #+ m mod n = m"
   199 apply (simp (no_asm_simp) add: mod_div_equality_natify)
   199 apply (simp (no_asm_simp) add: mod_div_equality_natify)
   200 done
   200 done
   201 
   201 
   202 
   202 
   203 subsection\<open>Further Facts about Remainder\<close>
   203 subsection\<open>Further Facts about Remainder\<close>
   204 
   204 
   205 text\<open>(mainly for mutilated chess board)\<close>
   205 text\<open>(mainly for mutilated chess board)\<close>
   206 
   206 
   207 lemma mod_succ_lemma:
   207 lemma mod_succ_lemma:
   208      "[| 0<n;  m:nat;  n:nat |]
   208      "\<lbrakk>0<n;  m:nat;  n:nat\<rbrakk>
   209       ==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))"
   209       \<Longrightarrow> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))"
   210 apply (erule complete_induct)
   210 apply (erule complete_induct)
   211 apply (case_tac "succ (x) <n")
   211 apply (case_tac "succ (x) <n")
   212 txt\<open>case succ(x) < n\<close>
   212 txt\<open>case succ(x) < n\<close>
   213  apply (simp (no_asm_simp) add: nat_le_refl [THEN lt_trans] succ_neq_self)
   213  apply (simp (no_asm_simp) add: nat_le_refl [THEN lt_trans] succ_neq_self)
   214  apply (simp add: ltD [THEN mem_imp_not_eq])
   214  apply (simp add: ltD [THEN mem_imp_not_eq])
   219 txt\<open>equality case\<close>
   219 txt\<open>equality case\<close>
   220 apply (simp add: diff_self_eq_0)
   220 apply (simp add: diff_self_eq_0)
   221 done
   221 done
   222 
   222 
   223 lemma mod_succ:
   223 lemma mod_succ:
   224   "n:nat ==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))"
   224   "n:nat \<Longrightarrow> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))"
   225 apply (case_tac "n=0")
   225 apply (case_tac "n=0")
   226  apply (simp (no_asm_simp) add: natify_succ DIVISION_BY_ZERO_MOD)
   226  apply (simp (no_asm_simp) add: natify_succ DIVISION_BY_ZERO_MOD)
   227 apply (subgoal_tac "natify (succ (m)) mod n = (if succ (natify (m) mod n) = n then 0 else succ (natify (m) mod n))")
   227 apply (subgoal_tac "natify (succ (m)) mod n = (if succ (natify (m) mod n) = n then 0 else succ (natify (m) mod n))")
   228  prefer 2
   228  prefer 2
   229  apply (subst natify_succ)
   229  apply (subst natify_succ)
   230  apply (rule mod_succ_lemma)
   230  apply (rule mod_succ_lemma)
   231   apply (auto simp del: natify_succ simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   231   apply (auto simp del: natify_succ simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   232 done
   232 done
   233 
   233 
   234 lemma mod_less_divisor: "[| 0<n;  n:nat |] ==> m mod n < n"
   234 lemma mod_less_divisor: "\<lbrakk>0<n;  n:nat\<rbrakk> \<Longrightarrow> m mod n < n"
   235 apply (subgoal_tac "natify (m) mod n < n")
   235 apply (subgoal_tac "natify (m) mod n < n")
   236 apply (rule_tac [2] i = "natify (m) " in complete_induct)
   236 apply (rule_tac [2] i = "natify (m) " in complete_induct)
   237 apply (case_tac [3] "x<n", auto)
   237 apply (case_tac [3] "x<n", auto)
   238 txt\<open>case \<^term>\<open>n \<le> x\<close>\<close>
   238 txt\<open>case \<^term>\<open>n \<le> x\<close>\<close>
   239 apply (simp add: mod_geq not_lt_iff_le div_termination [THEN ltD])
   239 apply (simp add: mod_geq not_lt_iff_le div_termination [THEN ltD])
   240 done
   240 done
   241 
   241 
   242 lemma mod_1_eq [simp]: "m mod 1 = 0"
   242 lemma mod_1_eq [simp]: "m mod 1 = 0"
   243 by (cut_tac n = 1 in mod_less_divisor, auto)
   243 by (cut_tac n = 1 in mod_less_divisor, auto)
   244 
   244 
   245 lemma mod2_cases: "b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)"
   245 lemma mod2_cases: "b<2 \<Longrightarrow> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)"
   246 apply (subgoal_tac "k mod 2: 2")
   246 apply (subgoal_tac "k mod 2: 2")
   247  prefer 2 apply (simp add: mod_less_divisor [THEN ltD])
   247  prefer 2 apply (simp add: mod_less_divisor [THEN ltD])
   248 apply (drule ltD, auto)
   248 apply (drule ltD, auto)
   249 done
   249 done
   250 
   250 
   264 by (cut_tac n = 0 in mod2_add_more, auto)
   264 by (cut_tac n = 0 in mod2_add_more, auto)
   265 
   265 
   266 
   266 
   267 subsection\<open>Additional theorems about \<open>\<le>\<close>\<close>
   267 subsection\<open>Additional theorems about \<open>\<le>\<close>\<close>
   268 
   268 
   269 lemma add_le_self: "m:nat ==> m \<le> (m #+ n)"
   269 lemma add_le_self: "m:nat \<Longrightarrow> m \<le> (m #+ n)"
   270 apply (simp (no_asm_simp))
   270 apply (simp (no_asm_simp))
   271 done
   271 done
   272 
   272 
   273 lemma add_le_self2: "m:nat ==> m \<le> (n #+ m)"
   273 lemma add_le_self2: "m:nat \<Longrightarrow> m \<le> (n #+ m)"
   274 apply (simp (no_asm_simp))
   274 apply (simp (no_asm_simp))
   275 done
   275 done
   276 
   276 
   277 (*** Monotonicity of Multiplication ***)
   277 (*** Monotonicity of Multiplication ***)
   278 
   278 
   279 lemma mult_le_mono1: "[| i \<le> j; j:nat |] ==> (i#*k) \<le> (j#*k)"
   279 lemma mult_le_mono1: "\<lbrakk>i \<le> j; j:nat\<rbrakk> \<Longrightarrow> (i#*k) \<le> (j#*k)"
   280 apply (subgoal_tac "natify (i) #*natify (k) \<le> j#*natify (k) ")
   280 apply (subgoal_tac "natify (i) #*natify (k) \<le> j#*natify (k) ")
   281 apply (frule_tac [2] lt_nat_in_nat)
   281 apply (frule_tac [2] lt_nat_in_nat)
   282 apply (rule_tac [3] n = "natify (k) " in nat_induct)
   282 apply (rule_tac [3] n = "natify (k) " in nat_induct)
   283 apply (simp_all add: add_le_mono)
   283 apply (simp_all add: add_le_mono)
   284 done
   284 done
   285 
   285 
   286 (* @{text"\<le>"} monotonicity, BOTH arguments*)
   286 (* @{text"\<le>"} monotonicity, BOTH arguments*)
   287 lemma mult_le_mono: "[| i \<le> j; k \<le> l; j:nat; l:nat |] ==> i#*k \<le> j#*l"
   287 lemma mult_le_mono: "\<lbrakk>i \<le> j; k \<le> l; j:nat; l:nat\<rbrakk> \<Longrightarrow> i#*k \<le> j#*l"
   288 apply (rule mult_le_mono1 [THEN le_trans], assumption+)
   288 apply (rule mult_le_mono1 [THEN le_trans], assumption+)
   289 apply (subst mult_commute, subst mult_commute, rule mult_le_mono1, assumption+)
   289 apply (subst mult_commute, subst mult_commute, rule mult_le_mono1, assumption+)
   290 done
   290 done
   291 
   291 
   292 (*strict, in 1st argument; proof is by induction on k>0.
   292 (*strict, in 1st argument; proof is by induction on k>0.
   293   I can't see how to relax the typing conditions.*)
   293   I can't see how to relax the typing conditions.*)
   294 lemma mult_lt_mono2: "[| i<j; 0<k; j:nat; k:nat |] ==> k#*i < k#*j"
   294 lemma mult_lt_mono2: "\<lbrakk>i<j; 0<k; j:nat; k:nat\<rbrakk> \<Longrightarrow> k#*i < k#*j"
   295 apply (erule zero_lt_natE)
   295 apply (erule zero_lt_natE)
   296 apply (frule_tac [2] lt_nat_in_nat)
   296 apply (frule_tac [2] lt_nat_in_nat)
   297 apply (simp_all (no_asm_simp))
   297 apply (simp_all (no_asm_simp))
   298 apply (induct_tac "x")
   298 apply (induct_tac "x")
   299 apply (simp_all (no_asm_simp) add: add_lt_mono)
   299 apply (simp_all (no_asm_simp) add: add_lt_mono)
   300 done
   300 done
   301 
   301 
   302 lemma mult_lt_mono1: "[| i<j; 0<k; j:nat; k:nat |] ==> i#*k < j#*k"
   302 lemma mult_lt_mono1: "\<lbrakk>i<j; 0<k; j:nat; k:nat\<rbrakk> \<Longrightarrow> i#*k < j#*k"
   303 apply (simp (no_asm_simp) add: mult_lt_mono2 mult_commute [of _ k])
   303 apply (simp (no_asm_simp) add: mult_lt_mono2 mult_commute [of _ k])
   304 done
   304 done
   305 
   305 
   306 lemma add_eq_0_iff [iff]: "m#+n = 0 \<longleftrightarrow> natify(m)=0 & natify(n)=0"
   306 lemma add_eq_0_iff [iff]: "m#+n = 0 \<longleftrightarrow> natify(m)=0 & natify(n)=0"
   307 apply (subgoal_tac "natify (m) #+ natify (n) = 0 \<longleftrightarrow> natify (m) =0 & natify (n) =0")
   307 apply (subgoal_tac "natify (m) #+ natify (n) = 0 \<longleftrightarrow> natify (m) =0 & natify (n) =0")
   324  apply (rule_tac [4] n = "natify (n) " in natE)
   324  apply (rule_tac [4] n = "natify (n) " in natE)
   325 apply auto
   325 apply auto
   326 done
   326 done
   327 
   327 
   328 
   328 
   329 lemma mult_is_zero: "[|m: nat; n: nat|] ==> (m #* n = 0) \<longleftrightarrow> (m = 0 | n = 0)"
   329 lemma mult_is_zero: "\<lbrakk>m: nat; n: nat\<rbrakk> \<Longrightarrow> (m #* n = 0) \<longleftrightarrow> (m = 0 | n = 0)"
   330 apply auto
   330 apply auto
   331 apply (erule natE)
   331 apply (erule natE)
   332 apply (erule_tac [2] natE, auto)
   332 apply (erule_tac [2] natE, auto)
   333 done
   333 done
   334 
   334 
   340 
   340 
   341 
   341 
   342 subsection\<open>Cancellation Laws for Common Factors in Comparisons\<close>
   342 subsection\<open>Cancellation Laws for Common Factors in Comparisons\<close>
   343 
   343 
   344 lemma mult_less_cancel_lemma:
   344 lemma mult_less_cancel_lemma:
   345      "[| k: nat; m: nat; n: nat |] ==> (m#*k < n#*k) \<longleftrightarrow> (0<k & m<n)"
   345      "\<lbrakk>k: nat; m: nat; n: nat\<rbrakk> \<Longrightarrow> (m#*k < n#*k) \<longleftrightarrow> (0<k & m<n)"
   346 apply (safe intro!: mult_lt_mono1)
   346 apply (safe intro!: mult_lt_mono1)
   347 apply (erule natE, auto)
   347 apply (erule natE, auto)
   348 apply (rule not_le_iff_lt [THEN iffD1])
   348 apply (rule not_le_iff_lt [THEN iffD1])
   349 apply (drule_tac [3] not_le_iff_lt [THEN [2] rev_iffD2])
   349 apply (drule_tac [3] not_le_iff_lt [THEN [2] rev_iffD2])
   350 prefer 5 apply (blast intro: mult_le_mono1, auto)
   350 prefer 5 apply (blast intro: mult_le_mono1, auto)
   369 lemma mult_le_cancel1 [simp]: "(k#*m \<le> k#*n) \<longleftrightarrow> (0 < natify(k) \<longrightarrow> natify(m) \<le> natify(n))"
   369 lemma mult_le_cancel1 [simp]: "(k#*m \<le> k#*n) \<longleftrightarrow> (0 < natify(k) \<longrightarrow> natify(m) \<le> natify(n))"
   370 apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym])
   370 apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym])
   371 apply auto
   371 apply auto
   372 done
   372 done
   373 
   373 
   374 lemma mult_le_cancel_le1: "k \<in> nat ==> k #* m \<le> k \<longleftrightarrow> (0 < k \<longrightarrow> natify(m) \<le> 1)"
   374 lemma mult_le_cancel_le1: "k \<in> nat \<Longrightarrow> k #* m \<le> k \<longleftrightarrow> (0 < k \<longrightarrow> natify(m) \<le> 1)"
   375 by (cut_tac k = k and m = m and n = 1 in mult_le_cancel1, auto)
   375 by (cut_tac k = k and m = m and n = 1 in mult_le_cancel1, auto)
   376 
   376 
   377 lemma Ord_eq_iff_le: "[| Ord(m); Ord(n) |] ==> m=n \<longleftrightarrow> (m \<le> n & n \<le> m)"
   377 lemma Ord_eq_iff_le: "\<lbrakk>Ord(m); Ord(n)\<rbrakk> \<Longrightarrow> m=n \<longleftrightarrow> (m \<le> n & n \<le> m)"
   378 by (blast intro: le_anti_sym)
   378 by (blast intro: le_anti_sym)
   379 
   379 
   380 lemma mult_cancel2_lemma:
   380 lemma mult_cancel2_lemma:
   381      "[| k: nat; m: nat; n: nat |] ==> (m#*k = n#*k) \<longleftrightarrow> (m=n | k=0)"
   381      "\<lbrakk>k: nat; m: nat; n: nat\<rbrakk> \<Longrightarrow> (m#*k = n#*k) \<longleftrightarrow> (m=n | k=0)"
   382 apply (simp (no_asm_simp) add: Ord_eq_iff_le [of "m#*k"] Ord_eq_iff_le [of m])
   382 apply (simp (no_asm_simp) add: Ord_eq_iff_le [of "m#*k"] Ord_eq_iff_le [of m])
   383 apply (auto simp add: Ord_0_lt_iff)
   383 apply (auto simp add: Ord_0_lt_iff)
   384 done
   384 done
   385 
   385 
   386 lemma mult_cancel2 [simp]:
   386 lemma mult_cancel2 [simp]:
   396 
   396 
   397 
   397 
   398 (** Cancellation law for division **)
   398 (** Cancellation law for division **)
   399 
   399 
   400 lemma div_cancel_raw:
   400 lemma div_cancel_raw:
   401      "[| 0<n; 0<k; k:nat; m:nat; n:nat |] ==> (k#*m) div (k#*n) = m div n"
   401      "\<lbrakk>0<n; 0<k; k:nat; m:nat; n:nat\<rbrakk> \<Longrightarrow> (k#*m) div (k#*n) = m div n"
   402 apply (erule_tac i = m in complete_induct)
   402 apply (erule_tac i = m in complete_induct)
   403 apply (case_tac "x<n")
   403 apply (case_tac "x<n")
   404  apply (simp add: div_less zero_lt_mult_iff mult_lt_mono2)
   404  apply (simp add: div_less zero_lt_mult_iff mult_lt_mono2)
   405 apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono]
   405 apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono]
   406           div_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD])
   406           div_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD])
   407 done
   407 done
   408 
   408 
   409 lemma div_cancel:
   409 lemma div_cancel:
   410      "[| 0 < natify(n);  0 < natify(k) |] ==> (k#*m) div (k#*n) = m div n"
   410      "\<lbrakk>0 < natify(n);  0 < natify(k)\<rbrakk> \<Longrightarrow> (k#*m) div (k#*n) = m div n"
   411 apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)"
   411 apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)"
   412        in div_cancel_raw)
   412        in div_cancel_raw)
   413 apply auto
   413 apply auto
   414 done
   414 done
   415 
   415 
   416 
   416 
   417 subsection\<open>More Lemmas about Remainder\<close>
   417 subsection\<open>More Lemmas about Remainder\<close>
   418 
   418 
   419 lemma mult_mod_distrib_raw:
   419 lemma mult_mod_distrib_raw:
   420      "[| k:nat; m:nat; n:nat |] ==> (k#*m) mod (k#*n) = k #* (m mod n)"
   420      "\<lbrakk>k:nat; m:nat; n:nat\<rbrakk> \<Longrightarrow> (k#*m) mod (k#*n) = k #* (m mod n)"
   421 apply (case_tac "k=0")
   421 apply (case_tac "k=0")
   422  apply (simp add: DIVISION_BY_ZERO_MOD)
   422  apply (simp add: DIVISION_BY_ZERO_MOD)
   423 apply (case_tac "n=0")
   423 apply (case_tac "n=0")
   424  apply (simp add: DIVISION_BY_ZERO_MOD)
   424  apply (simp add: DIVISION_BY_ZERO_MOD)
   425 apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   425 apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   438 
   438 
   439 lemma mult_mod_distrib: "(m mod n) #* k = (m#*k) mod (n#*k)"
   439 lemma mult_mod_distrib: "(m mod n) #* k = (m#*k) mod (n#*k)"
   440 apply (simp (no_asm) add: mult_commute mod_mult_distrib2)
   440 apply (simp (no_asm) add: mult_commute mod_mult_distrib2)
   441 done
   441 done
   442 
   442 
   443 lemma mod_add_self2_raw: "n \<in> nat ==> (m #+ n) mod n = m mod n"
   443 lemma mod_add_self2_raw: "n \<in> nat \<Longrightarrow> (m #+ n) mod n = m mod n"
   444 apply (subgoal_tac " (n #+ m) mod n = (n #+ m #- n) mod n")
   444 apply (subgoal_tac " (n #+ m) mod n = (n #+ m #- n) mod n")
   445 apply (simp add: add_commute)
   445 apply (simp add: add_commute)
   446 apply (subst mod_geq [symmetric], auto)
   446 apply (subst mod_geq [symmetric], auto)
   447 done
   447 done
   448 
   448 
   453 
   453 
   454 lemma mod_add_self1 [simp]: "(n#+m) mod n = m mod n"
   454 lemma mod_add_self1 [simp]: "(n#+m) mod n = m mod n"
   455 apply (simp (no_asm_simp) add: add_commute mod_add_self2)
   455 apply (simp (no_asm_simp) add: add_commute mod_add_self2)
   456 done
   456 done
   457 
   457 
   458 lemma mod_mult_self1_raw: "k \<in> nat ==> (m #+ k#*n) mod n = m mod n"
   458 lemma mod_mult_self1_raw: "k \<in> nat \<Longrightarrow> (m #+ k#*n) mod n = m mod n"
   459 apply (erule nat_induct)
   459 apply (erule nat_induct)
   460 apply (simp_all (no_asm_simp) add: add_left_commute [of _ n])
   460 apply (simp_all (no_asm_simp) add: add_left_commute [of _ n])
   461 done
   461 done
   462 
   462 
   463 lemma mod_mult_self1 [simp]: "(m #+ k#*n) mod n = m mod n"
   463 lemma mod_mult_self1 [simp]: "(m #+ k#*n) mod n = m mod n"
   468 lemma mod_mult_self2 [simp]: "(m #+ n#*k) mod n = m mod n"
   468 lemma mod_mult_self2 [simp]: "(m #+ n#*k) mod n = m mod n"
   469 apply (simp (no_asm) add: mult_commute mod_mult_self1)
   469 apply (simp (no_asm) add: mult_commute mod_mult_self1)
   470 done
   470 done
   471 
   471 
   472 (*Lemma for gcd*)
   472 (*Lemma for gcd*)
   473 lemma mult_eq_self_implies_10: "m = m#*n ==> natify(n)=1 | m=0"
   473 lemma mult_eq_self_implies_10: "m = m#*n \<Longrightarrow> natify(n)=1 | m=0"
   474 apply (subgoal_tac "m: nat")
   474 apply (subgoal_tac "m: nat")
   475  prefer 2
   475  prefer 2
   476  apply (erule ssubst)
   476  apply (erule ssubst)
   477  apply simp
   477  apply simp
   478 apply (rule disjCI)
   478 apply (rule disjCI)
   484  apply (simp del: mult_natify2)
   484  apply (simp del: mult_natify2)
   485 apply (drule nat_into_Ord [THEN Ord_0_lt, THEN [2] mult_lt_mono2], auto)
   485 apply (drule nat_into_Ord [THEN Ord_0_lt, THEN [2] mult_lt_mono2], auto)
   486 done
   486 done
   487 
   487 
   488 lemma less_imp_succ_add [rule_format]:
   488 lemma less_imp_succ_add [rule_format]:
   489      "[| m<n; n: nat |] ==> \<exists>k\<in>nat. n = succ(m#+k)"
   489      "\<lbrakk>m<n; n: nat\<rbrakk> \<Longrightarrow> \<exists>k\<in>nat. n = succ(m#+k)"
   490 apply (frule lt_nat_in_nat, assumption)
   490 apply (frule lt_nat_in_nat, assumption)
   491 apply (erule rev_mp)
   491 apply (erule rev_mp)
   492 apply (induct_tac "n")
   492 apply (induct_tac "n")
   493 apply (simp_all (no_asm) add: le_iff)
   493 apply (simp_all (no_asm) add: le_iff)
   494 apply (blast elim!: leE intro!: add_0_right [symmetric] add_succ_right [symmetric])
   494 apply (blast elim!: leE intro!: add_0_right [symmetric] add_succ_right [symmetric])
   495 done
   495 done
   496 
   496 
   497 lemma less_iff_succ_add:
   497 lemma less_iff_succ_add:
   498      "[| m: nat; n: nat |] ==> (m<n) \<longleftrightarrow> (\<exists>k\<in>nat. n = succ(m#+k))"
   498      "\<lbrakk>m: nat; n: nat\<rbrakk> \<Longrightarrow> (m<n) \<longleftrightarrow> (\<exists>k\<in>nat. n = succ(m#+k))"
   499 by (auto intro: less_imp_succ_add)
   499 by (auto intro: less_imp_succ_add)
   500 
   500 
   501 lemma add_lt_elim2:
   501 lemma add_lt_elim2:
   502      "\<lbrakk>a #+ d = b #+ c; a < b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c < d"
   502      "\<lbrakk>a #+ d = b #+ c; a < b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c < d"
   503 by (drule less_imp_succ_add, auto)
   503 by (drule less_imp_succ_add, auto)
   508 
   508 
   509 
   509 
   510 subsubsection\<open>More Lemmas About Difference\<close>
   510 subsubsection\<open>More Lemmas About Difference\<close>
   511 
   511 
   512 lemma diff_is_0_lemma:
   512 lemma diff_is_0_lemma:
   513      "[| m: nat; n: nat |] ==> m #- n = 0 \<longleftrightarrow> m \<le> n"
   513      "\<lbrakk>m: nat; n: nat\<rbrakk> \<Longrightarrow> m #- n = 0 \<longleftrightarrow> m \<le> n"
   514 apply (rule_tac m = m and n = n in diff_induct, simp_all)
   514 apply (rule_tac m = m and n = n in diff_induct, simp_all)
   515 done
   515 done
   516 
   516 
   517 lemma diff_is_0_iff: "m #- n = 0 \<longleftrightarrow> natify(m) \<le> natify(n)"
   517 lemma diff_is_0_iff: "m #- n = 0 \<longleftrightarrow> natify(m) \<le> natify(n)"
   518 by (simp add: diff_is_0_lemma [symmetric])
   518 by (simp add: diff_is_0_lemma [symmetric])
   519 
   519 
   520 lemma nat_lt_imp_diff_eq_0:
   520 lemma nat_lt_imp_diff_eq_0:
   521      "[| a:nat; b:nat; a<b |] ==> a #- b = 0"
   521      "\<lbrakk>a:nat; b:nat; a<b\<rbrakk> \<Longrightarrow> a #- b = 0"
   522 by (simp add: diff_is_0_iff le_iff)
   522 by (simp add: diff_is_0_iff le_iff)
   523 
   523 
   524 lemma raw_nat_diff_split:
   524 lemma raw_nat_diff_split:
   525      "[| a:nat; b:nat |] ==>
   525      "\<lbrakk>a:nat; b:nat\<rbrakk> \<Longrightarrow>
   526       (P(a #- b)) \<longleftrightarrow> ((a < b \<longrightarrow>P(0)) & (\<forall>d\<in>nat. a = b #+ d \<longrightarrow> P(d)))"
   526       (P(a #- b)) \<longleftrightarrow> ((a < b \<longrightarrow>P(0)) & (\<forall>d\<in>nat. a = b #+ d \<longrightarrow> P(d)))"
   527 apply (case_tac "a < b")
   527 apply (case_tac "a < b")
   528  apply (force simp add: nat_lt_imp_diff_eq_0)
   528  apply (force simp add: nat_lt_imp_diff_eq_0)
   529 apply (rule iffI, force, simp)
   529 apply (rule iffI, force, simp)
   530 apply (drule_tac x="a#-b" in bspec)
   530 apply (drule_tac x="a#-b" in bspec)
   538 apply simp_all
   538 apply simp_all
   539 done
   539 done
   540 
   540 
   541 text\<open>Difference and less-than\<close>
   541 text\<open>Difference and less-than\<close>
   542 
   542 
   543 lemma diff_lt_imp_lt: "[|(k#-i) < (k#-j); i\<in>nat; j\<in>nat; k\<in>nat|] ==> j<i"
   543 lemma diff_lt_imp_lt: "\<lbrakk>(k#-i) < (k#-j); i\<in>nat; j\<in>nat; k\<in>nat\<rbrakk> \<Longrightarrow> j<i"
   544 apply (erule rev_mp)
   544 apply (erule rev_mp)
   545 apply (simp split: nat_diff_split, auto)
   545 apply (simp split: nat_diff_split, auto)
   546  apply (blast intro: add_le_self lt_trans1)
   546  apply (blast intro: add_le_self lt_trans1)
   547 apply (rule not_le_iff_lt [THEN iffD1], auto)
   547 apply (rule not_le_iff_lt [THEN iffD1], auto)
   548 apply (subgoal_tac "i #+ da < j #+ d", force)
   548 apply (subgoal_tac "i #+ da < j #+ d", force)
   549 apply (blast intro: add_le_lt_mono)
   549 apply (blast intro: add_le_lt_mono)
   550 done
   550 done
   551 
   551 
   552 lemma lt_imp_diff_lt: "[|j<i; i\<le>k; k\<in>nat|] ==> (k#-i) < (k#-j)"
   552 lemma lt_imp_diff_lt: "\<lbrakk>j<i; i\<le>k; k\<in>nat\<rbrakk> \<Longrightarrow> (k#-i) < (k#-j)"
   553 apply (frule le_in_nat, assumption)
   553 apply (frule le_in_nat, assumption)
   554 apply (frule lt_nat_in_nat, assumption)
   554 apply (frule lt_nat_in_nat, assumption)
   555 apply (simp split: nat_diff_split, auto)
   555 apply (simp split: nat_diff_split, auto)
   556   apply (blast intro: lt_asym lt_trans2)
   556   apply (blast intro: lt_asym lt_trans2)
   557  apply (blast intro: lt_irrefl lt_trans2)
   557  apply (blast intro: lt_irrefl lt_trans2)
   559 apply (subgoal_tac "j #+ d < i #+ da", force)
   559 apply (subgoal_tac "j #+ d < i #+ da", force)
   560 apply (blast intro: add_lt_le_mono)
   560 apply (blast intro: add_lt_le_mono)
   561 done
   561 done
   562 
   562 
   563 
   563 
   564 lemma diff_lt_iff_lt: "[|i\<le>k; j\<in>nat; k\<in>nat|] ==> (k#-i) < (k#-j) \<longleftrightarrow> j<i"
   564 lemma diff_lt_iff_lt: "\<lbrakk>i\<le>k; j\<in>nat; k\<in>nat\<rbrakk> \<Longrightarrow> (k#-i) < (k#-j) \<longleftrightarrow> j<i"
   565 apply (frule le_in_nat, assumption)
   565 apply (frule le_in_nat, assumption)
   566 apply (blast intro: lt_imp_diff_lt diff_lt_imp_lt)
   566 apply (blast intro: lt_imp_diff_lt diff_lt_imp_lt)
   567 done
   567 done
   568 
   568 
   569 end
   569 end