src/HOL/Word/Bits_Z2.thy
changeset 70342 e4d626692640
parent 70191 bdc835d934b7
equal deleted inserted replaced
70341:972c0c744e7c 70342:e4d626692640
       
     1 (*  Title:      HOL/Word/Bits_Z2.thy
       
     2     Author:     Author: Brian Huffman, PSU and Gerwin Klein, NICTA
       
     3 *)
       
     4 
       
     5 section \<open>Bit operations in $\cal Z_2$\<close>
       
     6 
       
     7 theory Bits_Z2
       
     8   imports Bits "HOL-Library.Z2"
       
     9 begin
       
    10 
       
    11 instantiation bit :: bit_operations
       
    12 begin
       
    13 
       
    14 primrec bitNOT_bit
       
    15   where
       
    16     "NOT 0 = (1::bit)"
       
    17   | "NOT 1 = (0::bit)"
       
    18 
       
    19 primrec bitAND_bit
       
    20   where
       
    21     "0 AND y = (0::bit)"
       
    22   | "1 AND y = (y::bit)"
       
    23 
       
    24 primrec bitOR_bit
       
    25   where
       
    26     "0 OR y = (y::bit)"
       
    27   | "1 OR y = (1::bit)"
       
    28 
       
    29 primrec bitXOR_bit
       
    30   where
       
    31     "0 XOR y = (y::bit)"
       
    32   | "1 XOR y = (NOT y :: bit)"
       
    33 
       
    34 instance  ..
       
    35 
       
    36 end
       
    37 
       
    38 lemmas bit_simps =
       
    39   bitNOT_bit.simps bitAND_bit.simps bitOR_bit.simps bitXOR_bit.simps
       
    40 
       
    41 lemma bit_extra_simps [simp]:
       
    42   "x AND 0 = 0"
       
    43   "x AND 1 = x"
       
    44   "x OR 1 = 1"
       
    45   "x OR 0 = x"
       
    46   "x XOR 1 = NOT x"
       
    47   "x XOR 0 = x"
       
    48   for x :: bit
       
    49   by (cases x; auto)+
       
    50 
       
    51 lemma bit_ops_comm:
       
    52   "x AND y = y AND x"
       
    53   "x OR y = y OR x"
       
    54   "x XOR y = y XOR x"
       
    55   for x :: bit
       
    56   by (cases y; auto)+
       
    57 
       
    58 lemma bit_ops_same [simp]:
       
    59   "x AND x = x"
       
    60   "x OR x = x"
       
    61   "x XOR x = 0"
       
    62   for x :: bit
       
    63   by (cases x; auto)+
       
    64 
       
    65 lemma bit_not_not [simp]: "NOT (NOT x) = x"
       
    66   for x :: bit
       
    67   by (cases x) auto
       
    68 
       
    69 lemma bit_or_def: "b OR c = NOT (NOT b AND NOT c)"
       
    70   for b c :: bit
       
    71   by (induct b) simp_all
       
    72 
       
    73 lemma bit_xor_def: "b XOR c = (b AND NOT c) OR (NOT b AND c)"
       
    74   for b c :: bit
       
    75   by (induct b) simp_all
       
    76 
       
    77 lemma bit_NOT_eq_1_iff [simp]: "NOT b = 1 \<longleftrightarrow> b = 0"
       
    78   for b :: bit
       
    79   by (induct b) simp_all
       
    80 
       
    81 lemma bit_AND_eq_1_iff [simp]: "a AND b = 1 \<longleftrightarrow> a = 1 \<and> b = 1"
       
    82   for a b :: bit
       
    83   by (induct a) simp_all
       
    84 
       
    85 lemma bit_nand_same [simp]: "x AND NOT x = 0"
       
    86   for x :: bit
       
    87   by (cases x) simp_all
       
    88 
       
    89 end