src/HOL/Wellfounded.thy
changeset 76698 e65a50f6c2de
parent 76696 b6b7f3caa74a
child 76753 91d2903bfbcb
equal deleted inserted replaced
76697:e19a3dbbf5de 76698:e65a50f6c2de
   847   qed
   847   qed
   848   then show "P z"
   848   then show "P z"
   849     by (simp add: zeq)
   849     by (simp add: zeq)
   850 qed auto
   850 qed auto
   851 
   851 
       
   852 lemma refl_lex_prod[simp]: "refl r\<^sub>B \<Longrightarrow> refl (r\<^sub>A <*lex*> r\<^sub>B)"
       
   853   by (auto intro!: reflI dest: refl_onD)
       
   854 
   852 lemma irrefl_on_lex_prod[simp]:
   855 lemma irrefl_on_lex_prod[simp]:
   853   "irrefl_on A r\<^sub>A \<Longrightarrow> irrefl_on B r\<^sub>B \<Longrightarrow> irrefl_on (A \<times> B) (r\<^sub>A <*lex*> r\<^sub>B)"
   856   "irrefl_on A r\<^sub>A \<Longrightarrow> irrefl_on B r\<^sub>B \<Longrightarrow> irrefl_on (A \<times> B) (r\<^sub>A <*lex*> r\<^sub>B)"
   854   by (auto intro!: irrefl_onI dest: irrefl_onD)
   857   by (auto intro!: irrefl_onI dest: irrefl_onD)
   855 
   858 
   856 lemma irrefl_lex_prod[simp]: "irrefl r\<^sub>A \<Longrightarrow> irrefl r\<^sub>B \<Longrightarrow> irrefl (r\<^sub>A <*lex*> r\<^sub>B)"
   859 lemma irrefl_lex_prod[simp]: "irrefl r\<^sub>A \<Longrightarrow> irrefl r\<^sub>B \<Longrightarrow> irrefl (r\<^sub>A <*lex*> r\<^sub>B)"