src/HOL/Lambda/Lambda.thy
changeset 39162 e6ec5283cd22
parent 39161 75849a560c09
parent 39160 75e096565cd3
child 39163 4d701c0388c3
equal deleted inserted replaced
39161:75849a560c09 39162:e6ec5283cd22
     1 (*  Title:      HOL/Lambda/Lambda.thy
       
     2     Author:     Tobias Nipkow
       
     3     Copyright   1995 TU Muenchen
       
     4 *)
       
     5 
       
     6 header {* Basic definitions of Lambda-calculus *}
       
     7 
       
     8 theory Lambda imports Main begin
       
     9 
       
    10 declare [[syntax_ambiguity_level = 100]]
       
    11 
       
    12 
       
    13 subsection {* Lambda-terms in de Bruijn notation and substitution *}
       
    14 
       
    15 datatype dB =
       
    16     Var nat
       
    17   | App dB dB (infixl "\<degree>" 200)
       
    18   | Abs dB
       
    19 
       
    20 primrec
       
    21   lift :: "[dB, nat] => dB"
       
    22 where
       
    23     "lift (Var i) k = (if i < k then Var i else Var (i + 1))"
       
    24   | "lift (s \<degree> t) k = lift s k \<degree> lift t k"
       
    25   | "lift (Abs s) k = Abs (lift s (k + 1))"
       
    26 
       
    27 primrec
       
    28   subst :: "[dB, dB, nat] => dB"  ("_[_'/_]" [300, 0, 0] 300)
       
    29 where (* FIXME base names *)
       
    30     subst_Var: "(Var i)[s/k] =
       
    31       (if k < i then Var (i - 1) else if i = k then s else Var i)"
       
    32   | subst_App: "(t \<degree> u)[s/k] = t[s/k] \<degree> u[s/k]"
       
    33   | subst_Abs: "(Abs t)[s/k] = Abs (t[lift s 0 / k+1])"
       
    34 
       
    35 declare subst_Var [simp del]
       
    36 
       
    37 text {* Optimized versions of @{term subst} and @{term lift}. *}
       
    38 
       
    39 primrec
       
    40   liftn :: "[nat, dB, nat] => dB"
       
    41 where
       
    42     "liftn n (Var i) k = (if i < k then Var i else Var (i + n))"
       
    43   | "liftn n (s \<degree> t) k = liftn n s k \<degree> liftn n t k"
       
    44   | "liftn n (Abs s) k = Abs (liftn n s (k + 1))"
       
    45 
       
    46 primrec
       
    47   substn :: "[dB, dB, nat] => dB"
       
    48 where
       
    49     "substn (Var i) s k =
       
    50       (if k < i then Var (i - 1) else if i = k then liftn k s 0 else Var i)"
       
    51   | "substn (t \<degree> u) s k = substn t s k \<degree> substn u s k"
       
    52   | "substn (Abs t) s k = Abs (substn t s (k + 1))"
       
    53 
       
    54 
       
    55 subsection {* Beta-reduction *}
       
    56 
       
    57 inductive beta :: "[dB, dB] => bool"  (infixl "\<rightarrow>\<^sub>\<beta>" 50)
       
    58   where
       
    59     beta [simp, intro!]: "Abs s \<degree> t \<rightarrow>\<^sub>\<beta> s[t/0]"
       
    60   | appL [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> s \<degree> u \<rightarrow>\<^sub>\<beta> t \<degree> u"
       
    61   | appR [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> u \<degree> s \<rightarrow>\<^sub>\<beta> u \<degree> t"
       
    62   | abs [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> Abs s \<rightarrow>\<^sub>\<beta> Abs t"
       
    63 
       
    64 abbreviation
       
    65   beta_reds :: "[dB, dB] => bool"  (infixl "->>" 50) where
       
    66   "s ->> t == beta^** s t"
       
    67 
       
    68 notation (latex)
       
    69   beta_reds  (infixl "\<rightarrow>\<^sub>\<beta>\<^sup>*" 50)
       
    70 
       
    71 inductive_cases beta_cases [elim!]:
       
    72   "Var i \<rightarrow>\<^sub>\<beta> t"
       
    73   "Abs r \<rightarrow>\<^sub>\<beta> s"
       
    74   "s \<degree> t \<rightarrow>\<^sub>\<beta> u"
       
    75 
       
    76 declare if_not_P [simp] not_less_eq [simp]
       
    77   -- {* don't add @{text "r_into_rtrancl[intro!]"} *}
       
    78 
       
    79 
       
    80 subsection {* Congruence rules *}
       
    81 
       
    82 lemma rtrancl_beta_Abs [intro!]:
       
    83     "s \<rightarrow>\<^sub>\<beta>\<^sup>* s' ==> Abs s \<rightarrow>\<^sub>\<beta>\<^sup>* Abs s'"
       
    84   by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+
       
    85 
       
    86 lemma rtrancl_beta_AppL:
       
    87     "s \<rightarrow>\<^sub>\<beta>\<^sup>* s' ==> s \<degree> t \<rightarrow>\<^sub>\<beta>\<^sup>* s' \<degree> t"
       
    88   by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+
       
    89 
       
    90 lemma rtrancl_beta_AppR:
       
    91     "t \<rightarrow>\<^sub>\<beta>\<^sup>* t' ==> s \<degree> t \<rightarrow>\<^sub>\<beta>\<^sup>* s \<degree> t'"
       
    92   by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+
       
    93 
       
    94 lemma rtrancl_beta_App [intro]:
       
    95     "[| s \<rightarrow>\<^sub>\<beta>\<^sup>* s'; t \<rightarrow>\<^sub>\<beta>\<^sup>* t' |] ==> s \<degree> t \<rightarrow>\<^sub>\<beta>\<^sup>* s' \<degree> t'"
       
    96   by (blast intro!: rtrancl_beta_AppL rtrancl_beta_AppR intro: rtranclp_trans)
       
    97 
       
    98 
       
    99 subsection {* Substitution-lemmas *}
       
   100 
       
   101 lemma subst_eq [simp]: "(Var k)[u/k] = u"
       
   102   by (simp add: subst_Var)
       
   103 
       
   104 lemma subst_gt [simp]: "i < j ==> (Var j)[u/i] = Var (j - 1)"
       
   105   by (simp add: subst_Var)
       
   106 
       
   107 lemma subst_lt [simp]: "j < i ==> (Var j)[u/i] = Var j"
       
   108   by (simp add: subst_Var)
       
   109 
       
   110 lemma lift_lift:
       
   111     "i < k + 1 \<Longrightarrow> lift (lift t i) (Suc k) = lift (lift t k) i"
       
   112   by (induct t arbitrary: i k) auto
       
   113 
       
   114 lemma lift_subst [simp]:
       
   115     "j < i + 1 \<Longrightarrow> lift (t[s/j]) i = (lift t (i + 1)) [lift s i / j]"
       
   116   by (induct t arbitrary: i j s)
       
   117     (simp_all add: diff_Suc subst_Var lift_lift split: nat.split)
       
   118 
       
   119 lemma lift_subst_lt:
       
   120     "i < j + 1 \<Longrightarrow> lift (t[s/j]) i = (lift t i) [lift s i / j + 1]"
       
   121   by (induct t arbitrary: i j s) (simp_all add: subst_Var lift_lift)
       
   122 
       
   123 lemma subst_lift [simp]:
       
   124     "(lift t k)[s/k] = t"
       
   125   by (induct t arbitrary: k s) simp_all
       
   126 
       
   127 lemma subst_subst:
       
   128     "i < j + 1 \<Longrightarrow> t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]"
       
   129   by (induct t arbitrary: i j u v)
       
   130     (simp_all add: diff_Suc subst_Var lift_lift [symmetric] lift_subst_lt
       
   131       split: nat.split)
       
   132 
       
   133 
       
   134 subsection {* Equivalence proof for optimized substitution *}
       
   135 
       
   136 lemma liftn_0 [simp]: "liftn 0 t k = t"
       
   137   by (induct t arbitrary: k) (simp_all add: subst_Var)
       
   138 
       
   139 lemma liftn_lift [simp]: "liftn (Suc n) t k = lift (liftn n t k) k"
       
   140   by (induct t arbitrary: k) (simp_all add: subst_Var)
       
   141 
       
   142 lemma substn_subst_n [simp]: "substn t s n = t[liftn n s 0 / n]"
       
   143   by (induct t arbitrary: n) (simp_all add: subst_Var)
       
   144 
       
   145 theorem substn_subst_0: "substn t s 0 = t[s/0]"
       
   146   by simp
       
   147 
       
   148 
       
   149 subsection {* Preservation theorems *}
       
   150 
       
   151 text {* Not used in Church-Rosser proof, but in Strong
       
   152   Normalization. \medskip *}
       
   153 
       
   154 theorem subst_preserves_beta [simp]:
       
   155     "r \<rightarrow>\<^sub>\<beta> s ==> r[t/i] \<rightarrow>\<^sub>\<beta> s[t/i]"
       
   156   by (induct arbitrary: t i set: beta) (simp_all add: subst_subst [symmetric])
       
   157 
       
   158 theorem subst_preserves_beta': "r \<rightarrow>\<^sub>\<beta>\<^sup>* s ==> r[t/i] \<rightarrow>\<^sub>\<beta>\<^sup>* s[t/i]"
       
   159   apply (induct set: rtranclp)
       
   160    apply (rule rtranclp.rtrancl_refl)
       
   161   apply (erule rtranclp.rtrancl_into_rtrancl)
       
   162   apply (erule subst_preserves_beta)
       
   163   done
       
   164 
       
   165 theorem lift_preserves_beta [simp]:
       
   166     "r \<rightarrow>\<^sub>\<beta> s ==> lift r i \<rightarrow>\<^sub>\<beta> lift s i"
       
   167   by (induct arbitrary: i set: beta) auto
       
   168 
       
   169 theorem lift_preserves_beta': "r \<rightarrow>\<^sub>\<beta>\<^sup>* s ==> lift r i \<rightarrow>\<^sub>\<beta>\<^sup>* lift s i"
       
   170   apply (induct set: rtranclp)
       
   171    apply (rule rtranclp.rtrancl_refl)
       
   172   apply (erule rtranclp.rtrancl_into_rtrancl)
       
   173   apply (erule lift_preserves_beta)
       
   174   done
       
   175 
       
   176 theorem subst_preserves_beta2 [simp]: "r \<rightarrow>\<^sub>\<beta> s ==> t[r/i] \<rightarrow>\<^sub>\<beta>\<^sup>* t[s/i]"
       
   177   apply (induct t arbitrary: r s i)
       
   178     apply (simp add: subst_Var r_into_rtranclp)
       
   179    apply (simp add: rtrancl_beta_App)
       
   180   apply (simp add: rtrancl_beta_Abs)
       
   181   done
       
   182 
       
   183 theorem subst_preserves_beta2': "r \<rightarrow>\<^sub>\<beta>\<^sup>* s ==> t[r/i] \<rightarrow>\<^sub>\<beta>\<^sup>* t[s/i]"
       
   184   apply (induct set: rtranclp)
       
   185    apply (rule rtranclp.rtrancl_refl)
       
   186   apply (erule rtranclp_trans)
       
   187   apply (erule subst_preserves_beta2)
       
   188   done
       
   189 
       
   190 end