src/HOL/IMP/Abs_Int1_parity.thy
changeset 47613 e72e44cee6f2
child 49188 22f7e7b68f50
equal deleted inserted replaced
47603:b716b16ab2ac 47613:e72e44cee6f2
       
     1 theory Abs_Int1_parity
       
     2 imports Abs_Int1
       
     3 begin
       
     4 
       
     5 subsection "Parity Analysis"
       
     6 
       
     7 datatype parity = Even | Odd | Either
       
     8 
       
     9 text{* Instantiation of class @{class preord} with type @{typ parity}: *}
       
    10 
       
    11 instantiation parity :: preord
       
    12 begin
       
    13 
       
    14 text{* First the definition of the interface function @{text"\<sqsubseteq>"}. Note that
       
    15 the header of the definition must refer to the ascii name @{const le} of the
       
    16 constants as @{text le_parity} and the definition is named @{text
       
    17 le_parity_def}.  Inside the definition the symbolic names can be used. *}
       
    18 
       
    19 definition le_parity where
       
    20 "x \<sqsubseteq> y = (y = Either \<or> x=y)"
       
    21 
       
    22 text{* Now the instance proof, i.e.\ the proof that the definition fulfills
       
    23 the axioms (assumptions) of the class. The initial proof-step generates the
       
    24 necessary proof obligations. *}
       
    25 
       
    26 instance
       
    27 proof
       
    28   fix x::parity show "x \<sqsubseteq> x" by(auto simp: le_parity_def)
       
    29 next
       
    30   fix x y z :: parity assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z"
       
    31     by(auto simp: le_parity_def)
       
    32 qed
       
    33 
       
    34 end
       
    35 
       
    36 text{* Instantiation of class @{class SL_top} with type @{typ parity}: *}
       
    37 
       
    38 instantiation parity :: SL_top
       
    39 begin
       
    40 
       
    41 definition join_parity where
       
    42 "x \<squnion> y = (if x \<sqsubseteq> y then y else if y \<sqsubseteq> x then x else Either)"
       
    43 
       
    44 definition Top_parity where
       
    45 "\<top> = Either"
       
    46 
       
    47 text{* Now the instance proof. This time we take a lazy shortcut: we do not
       
    48 write out the proof obligations but use the @{text goali} primitive to refer
       
    49 to the assumptions of subgoal i and @{text "case?"} to refer to the
       
    50 conclusion of subgoal i. The class axioms are presented in the same order as
       
    51 in the class definition. *}
       
    52 
       
    53 instance
       
    54 proof
       
    55   case goal1 (*join1*) show ?case by(auto simp: le_parity_def join_parity_def)
       
    56 next
       
    57   case goal2 (*join2*) show ?case by(auto simp: le_parity_def join_parity_def)
       
    58 next
       
    59   case goal3 (*join least*) thus ?case by(auto simp: le_parity_def join_parity_def)
       
    60 next
       
    61   case goal4 (*Top*) show ?case by(auto simp: le_parity_def Top_parity_def)
       
    62 qed
       
    63 
       
    64 end
       
    65 
       
    66 
       
    67 text{* Now we define the functions used for instantiating the abstract
       
    68 interpretation locales. Note that the Isabelle terminology is
       
    69 \emph{interpretation}, not \emph{instantiation} of locales, but we use
       
    70 instantiation to avoid confusion with abstract interpretation.  *}
       
    71 
       
    72 fun \<gamma>_parity :: "parity \<Rightarrow> val set" where
       
    73 "\<gamma>_parity Even = {i. i mod 2 = 0}" |
       
    74 "\<gamma>_parity Odd  = {i. i mod 2 = 1}" |
       
    75 "\<gamma>_parity Either = UNIV"
       
    76 
       
    77 fun num_parity :: "val \<Rightarrow> parity" where
       
    78 "num_parity i = (if i mod 2 = 0 then Even else Odd)"
       
    79 
       
    80 fun plus_parity :: "parity \<Rightarrow> parity \<Rightarrow> parity" where
       
    81 "plus_parity Even Even = Even" |
       
    82 "plus_parity Odd  Odd  = Even" |
       
    83 "plus_parity Even Odd  = Odd" |
       
    84 "plus_parity Odd  Even = Odd" |
       
    85 "plus_parity Either y  = Either" |
       
    86 "plus_parity x Either  = Either"
       
    87 
       
    88 text{* First we instantiate the abstract value interface and prove that the
       
    89 functions on type @{typ parity} have all the necessary properties: *}
       
    90 
       
    91 interpretation Val_abs
       
    92 where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
       
    93 proof txt{* of the locale axioms *}
       
    94   fix a b :: parity
       
    95   assume "a \<sqsubseteq> b" thus "\<gamma>_parity a \<subseteq> \<gamma>_parity b"
       
    96     by(auto simp: le_parity_def)
       
    97 next txt{* The rest in the lazy, implicit way *}
       
    98   case goal2 show ?case by(auto simp: Top_parity_def)
       
    99 next
       
   100   case goal3 show ?case by auto
       
   101 next
       
   102   txt{* Warning: this subproof refers to the names @{text a1} and @{text a2}
       
   103   from the statement of the axiom. *}
       
   104   case goal4 thus ?case
       
   105   proof(cases a1 a2 rule: parity.exhaust[case_product parity.exhaust])
       
   106   qed (auto simp add:mod_add_eq)
       
   107 qed
       
   108 
       
   109 text{* Instantiating the abstract interpretation locale requires no more
       
   110 proofs (they happened in the instatiation above) but delivers the
       
   111 instantiated abstract interpreter which we call AI: *}
       
   112 
       
   113 interpretation Abs_Int
       
   114 where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
       
   115 defines aval_parity is aval' and step_parity is step' and AI_parity is AI
       
   116 ..
       
   117 
       
   118 
       
   119 subsubsection "Tests"
       
   120 
       
   121 definition "test1_parity =
       
   122   ''x'' ::= N 1;
       
   123   WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 2)"
       
   124 
       
   125 value "show_acom_opt (AI_parity test1_parity)"
       
   126 
       
   127 definition "test2_parity =
       
   128   ''x'' ::= N 1;
       
   129   WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 3)"
       
   130 
       
   131 definition "steps c i = (step_parity(top c) ^^ i) (bot c)"
       
   132 
       
   133 value "show_acom (steps test2_parity 0)"
       
   134 value "show_acom (steps test2_parity 1)"
       
   135 value "show_acom (steps test2_parity 2)"
       
   136 value "show_acom (steps test2_parity 3)"
       
   137 value "show_acom (steps test2_parity 4)"
       
   138 value "show_acom (steps test2_parity 5)"
       
   139 value "show_acom_opt (AI_parity test2_parity)"
       
   140 
       
   141 
       
   142 subsubsection "Termination"
       
   143 
       
   144 interpretation Abs_Int_mono
       
   145 where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
       
   146 proof
       
   147   case goal1 thus ?case
       
   148   proof(cases a1 a2 b1 b2
       
   149    rule: parity.exhaust[case_product parity.exhaust[case_product parity.exhaust[case_product parity.exhaust]]]) (* FIXME - UGLY! *)
       
   150   qed (auto simp add:le_parity_def)
       
   151 qed
       
   152 
       
   153 definition m_parity :: "parity \<Rightarrow> nat" where
       
   154 "m_parity x = (if x=Either then 0 else 1)"
       
   155 
       
   156 interpretation Abs_Int_measure
       
   157 where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
       
   158 and m = m_parity and h = "2"
       
   159 proof
       
   160   case goal1 thus ?case by(auto simp add: m_parity_def le_parity_def)
       
   161 next
       
   162   case goal2 thus ?case by(auto simp add: m_parity_def le_parity_def)
       
   163 next
       
   164   case goal3 thus ?case by(auto simp add: m_parity_def le_parity_def)
       
   165 qed
       
   166 
       
   167 thm AI_Some_measure
       
   168 
       
   169 end