equal
deleted
inserted
replaced
644 apply auto |
644 apply auto |
645 done |
645 done |
646 |
646 |
647 lemma LIMSEQ_root: "(\<lambda>n. root n n) \<longlonglongrightarrow> 1" |
647 lemma LIMSEQ_root: "(\<lambda>n. root n n) \<longlonglongrightarrow> 1" |
648 proof - |
648 proof - |
649 def x \<equiv> "\<lambda>n. root n n - 1" |
649 define x where "x n = root n n - 1" for n |
650 have "x \<longlonglongrightarrow> sqrt 0" |
650 have "x \<longlonglongrightarrow> sqrt 0" |
651 proof (rule tendsto_sandwich[OF _ _ tendsto_const]) |
651 proof (rule tendsto_sandwich[OF _ _ tendsto_const]) |
652 show "(\<lambda>x. sqrt (2 / x)) \<longlonglongrightarrow> sqrt 0" |
652 show "(\<lambda>x. sqrt (2 / x)) \<longlonglongrightarrow> sqrt 0" |
653 by (intro tendsto_intros tendsto_divide_0[OF tendsto_const] filterlim_mono[OF filterlim_real_sequentially]) |
653 by (intro tendsto_intros tendsto_divide_0[OF tendsto_const] filterlim_mono[OF filterlim_real_sequentially]) |
654 (simp_all add: at_infinity_eq_at_top_bot) |
654 (simp_all add: at_infinity_eq_at_top_bot) |
682 lemma LIMSEQ_root_const: |
682 lemma LIMSEQ_root_const: |
683 assumes "0 < c" |
683 assumes "0 < c" |
684 shows "(\<lambda>n. root n c) \<longlonglongrightarrow> 1" |
684 shows "(\<lambda>n. root n c) \<longlonglongrightarrow> 1" |
685 proof - |
685 proof - |
686 { fix c :: real assume "1 \<le> c" |
686 { fix c :: real assume "1 \<le> c" |
687 def x \<equiv> "\<lambda>n. root n c - 1" |
687 define x where "x n = root n c - 1" for n |
688 have "x \<longlonglongrightarrow> 0" |
688 have "x \<longlonglongrightarrow> 0" |
689 proof (rule tendsto_sandwich[OF _ _ tendsto_const]) |
689 proof (rule tendsto_sandwich[OF _ _ tendsto_const]) |
690 show "(\<lambda>n. c / n) \<longlonglongrightarrow> 0" |
690 show "(\<lambda>n. c / n) \<longlonglongrightarrow> 0" |
691 by (intro tendsto_divide_0[OF tendsto_const] filterlim_mono[OF filterlim_real_sequentially]) |
691 by (intro tendsto_divide_0[OF tendsto_const] filterlim_mono[OF filterlim_real_sequentially]) |
692 (simp_all add: at_infinity_eq_at_top_bot) |
692 (simp_all add: at_infinity_eq_at_top_bot) |