src/HOL/Real/README.html
changeset 14631 ec1e67f88f49
parent 12254 78bc1f3462b5
equal deleted inserted replaced
14630:4a9cc3080dbc 14631:ec1e67f88f49
     1 <!-- $Id$ -->
     1 <!-- $Id$ -->
     2 <HTML><HEAD><TITLE>HOL/Real/README</TITLE></HEAD><BODY>
       
     3 
     2 
     4 <H2>Real--Dedekind Cut Construction of the Real Line</H2>
     3 <html>
     5 
     4 
     6 <ul>
     5 	<head>
     7 <LI><A HREF="PNat.html">PNat</A>  The positive integers (very much the same as <A HREF="../Nat.html">Nat.thy</A>!) 
     6 		<meta http-equiv="content-type" content="text/html;charset=iso-8859-1">
     8 <LI><A HREF="PRat.html">PRat</A>  The positive rationals
     7 		<title>HOL/Real/README</title>
     9 <LI><A HREF="PReal.html">PReal</A> The positive reals constructed using Dedekind cuts
     8 	</head>
    10 <LI><A HREF="RealDef.html">RealDef</A>  The real numbers
       
    11 <LI><A HREF="RealOrd.html">RealOrd</A>  More real numbers theorems- ordering
       
    12 properties
       
    13 <LI><A HREF="RealInt.html">RealInt</A>  Embedding of the integers in the reals
       
    14 <LI><A HREF="RealBin.html">RealBin</A> Binary arithmetic for the reals 
       
    15 
     9 
    16 <LI><A HREF="Lubs.html">Lubs</A>  Definition of upper bounds, lubs and so on. 
    10 	<body>
    17      (Useful e.g. in Fleuriot's NSA theory)
    11 		<h2>Real: Dedekind Cut Construction of the Real Line</h2>
    18 <LI><A HREF="RComplete.html">RComplete</A> Proof of completeness of reals in form of the supremum 
    12 		<ul>
    19             property. Also proofs that the reals have the Archimedean
    13 			<li><a href="Lubs.html">Lubs</a> Definition of upper bounds, lubs and so on, to support completeness proofs.
    20             property.
    14 			<li><a href="PReal.html">PReal</a> The positive reals constructed using Dedekind cuts
    21 <LI><A HREF="RealAbs.html">RealAbs</A> The absolute value function defined for the reals
       
    22 </ul>
       
    23 
    15 
    24 <H2>Hyperreal--Ultrapower Construction of the Non-Standard Reals</H2>
    16 			<li><a href="Rational.html">Rational</a> The rational numbers constructed as equivalence classes of integers
       
    17 			
       
    18 			<li><a href="RComplete.html">RComplete</a> The reals are complete: they satisfy the supremum property. They also have the Archimedean property.
    25 
    19 
    26 <p>
    20             <li><a href="RealDef.html">RealDef</a> The real numbers, their ordering properties, and embedding of the integers and the natural numbers
    27 See J. D. Fleuriot and L. C. Paulson. Mechanizing Nonstandard Real
    21 			
    28 Analysis. LMS J. Computation and Mathematics 3 (2000), 140-190.
    22 			<li><a href="RealPow.html">RealPow</a> Real numbers raised to natural number powers
    29 </p>
    23 			
       
    24 		</ul>
       
    25 		<p>Last modified on $Date$</p>
       
    26 		<hr>
       
    27 		<address><a name="lcp@cl.cam.ac.uk" href="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</a></address>
       
    28 	</body>
    30 
    29 
    31 <UL>
    30 </html>
    32 <LI><A HREF="Zorn.html">Zorn</A>
       
    33 Zorn's Lemma: proof based on the <A HREF="../../../ZF/Zorn.html">ZF version</A>
       
    34 
       
    35 <LI><A HREF="Filter.html">Filter</A>
       
    36 Theory of Filters and Ultrafilters.
       
    37 Main result is a version of the Ultrafilter Theorem proved using
       
    38 Zorn's Lemma. 
       
    39 
       
    40 <LI><A HREF="HyperDef.html">HyperDef</A>
       
    41 Ultrapower construction of the hyperreals
       
    42 
       
    43 <LI><A HREF="HyperOrd.html">HyperOrd</A>
       
    44 More hyperreal numbers theorems- ordering properties
       
    45 
       
    46 <LI><A HREF="HRealAbs.html">HRealAbs</A> The absolute value function
       
    47 defined for the hyperreals 
       
    48 
       
    49 
       
    50 <LI><A HREF="NSA.html">NSA</A>
       
    51 Theory defining sets of infinite numbers, infinitesimals, 
       
    52 the infinitely close relation, and their various algebraic properties.
       
    53 
       
    54 <LI><A HREF="HyperNat.html">HyperNat</A>
       
    55 Ultrapower construction of the hypernaturals
       
    56 
       
    57 <LI><A HREF="HyperPow.html">HyperPow</A>
       
    58 Powers theory for the hyperreals
       
    59 
       
    60 <LI><A HREF="Star.html">Star</A>
       
    61 Nonstandard extensions of real sets and real functions
       
    62 
       
    63 <LI><A HREF="NatStar.html">NatStar</A>
       
    64 Nonstandard extensions of sets of naturals and functions on the natural
       
    65 numbers
       
    66 
       
    67 <LI><A HREF="SEQ.html">SEQ</A>
       
    68 Theory of sequences developed using standard and nonstandard analysis
       
    69 
       
    70 <LI><A HREF="Lim.html">Lim</A>
       
    71 Theory of limits, continuous functions, and derivatives
       
    72 
       
    73 <LI><A HREF="Series.html">Series</A>
       
    74 Standard theory of finite summation and infinite series
       
    75 
       
    76 
       
    77 
       
    78 </UL>
       
    79 
       
    80 <P>Last modified on $Date$
       
    81 
       
    82 <HR>
       
    83 
       
    84 <ADDRESS>
       
    85 <A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
       
    86 </ADDRESS>
       
    87 </BODY></HTML>