src/HOL/ex/PER.thy
changeset 20811 eccbfaf2bc0e
parent 19736 d8d0f8f51d69
child 21404 eb85850d3eb7
equal deleted inserted replaced
20810:3377a830b727 20811:eccbfaf2bc0e
    47 definition
    47 definition
    48   "domain" :: "'a::partial_equiv set"
    48   "domain" :: "'a::partial_equiv set"
    49   "domain = {x. x \<sim> x}"
    49   "domain = {x. x \<sim> x}"
    50 
    50 
    51 lemma domainI [intro]: "x \<sim> x ==> x \<in> domain"
    51 lemma domainI [intro]: "x \<sim> x ==> x \<in> domain"
    52   by (unfold domain_def) blast
    52   unfolding domain_def by blast
    53 
    53 
    54 lemma domainD [dest]: "x \<in> domain ==> x \<sim> x"
    54 lemma domainD [dest]: "x \<in> domain ==> x \<sim> x"
    55   by (unfold domain_def) blast
    55   unfolding domain_def by blast
    56 
    56 
    57 theorem domainI' [elim?]: "x \<sim> y ==> x \<in> domain"
    57 theorem domainI' [elim?]: "x \<sim> y ==> x \<in> domain"
    58 proof
    58 proof
    59   assume xy: "x \<sim> y"
    59   assume xy: "x \<sim> y"
    60   also from xy have "y \<sim> x" ..
    60   also from xy have "y \<sim> x" ..
    73 defs (overloaded)
    73 defs (overloaded)
    74   eqv_fun_def: "f \<sim> g == \<forall>x \<in> domain. \<forall>y \<in> domain. x \<sim> y --> f x \<sim> g y"
    74   eqv_fun_def: "f \<sim> g == \<forall>x \<in> domain. \<forall>y \<in> domain. x \<sim> y --> f x \<sim> g y"
    75 
    75 
    76 lemma partial_equiv_funI [intro?]:
    76 lemma partial_equiv_funI [intro?]:
    77     "(!!x y. x \<in> domain ==> y \<in> domain ==> x \<sim> y ==> f x \<sim> g y) ==> f \<sim> g"
    77     "(!!x y. x \<in> domain ==> y \<in> domain ==> x \<sim> y ==> f x \<sim> g y) ==> f \<sim> g"
    78   by (unfold eqv_fun_def) blast
    78   unfolding eqv_fun_def by blast
    79 
    79 
    80 lemma partial_equiv_funD [dest?]:
    80 lemma partial_equiv_funD [dest?]:
    81     "f \<sim> g ==> x \<in> domain ==> y \<in> domain ==> x \<sim> y ==> f x \<sim> g y"
    81     "f \<sim> g ==> x \<in> domain ==> y \<in> domain ==> x \<sim> y ==> f x \<sim> g y"
    82   by (unfold eqv_fun_def) blast
    82   unfolding eqv_fun_def by blast
    83 
    83 
    84 text {*
    84 text {*
    85   The class of partial equivalence relations is closed under function
    85   The class of partial equivalence relations is closed under function
    86   spaces (in \emph{both} argument positions).
    86   spaces (in \emph{both} argument positions).
    87 *}
    87 *}
    88 
    88 
    89 instance fun :: (partial_equiv, partial_equiv) partial_equiv
    89 instance "fun" :: (partial_equiv, partial_equiv) partial_equiv
    90 proof
    90 proof
    91   fix f g h :: "'a::partial_equiv => 'b::partial_equiv"
    91   fix f g h :: "'a::partial_equiv => 'b::partial_equiv"
    92   assume fg: "f \<sim> g"
    92   assume fg: "f \<sim> g"
    93   show "g \<sim> f"
    93   show "g \<sim> f"
    94   proof
    94   proof
    95     fix x y :: 'a
    95     fix x y :: 'a
    96     assume x: "x \<in> domain" and y: "y \<in> domain"
    96     assume x: "x \<in> domain" and y: "y \<in> domain"
    97     assume "x \<sim> y" hence "y \<sim> x" ..
    97     assume "x \<sim> y" then have "y \<sim> x" ..
    98     with fg y x have "f y \<sim> g x" ..
    98     with fg y x have "f y \<sim> g x" ..
    99     thus "g x \<sim> f y" ..
    99     then show "g x \<sim> f y" ..
   100   qed
   100   qed
   101   assume gh: "g \<sim> h"
   101   assume gh: "g \<sim> h"
   102   show "f \<sim> h"
   102   show "f \<sim> h"
   103   proof
   103   proof
   104     fix x y :: 'a
   104     fix x y :: 'a
   152 
   152 
   153 typedef 'a quot = "{{x. a \<sim> x}| a::'a. True}"
   153 typedef 'a quot = "{{x. a \<sim> x}| a::'a. True}"
   154   by blast
   154   by blast
   155 
   155 
   156 lemma quotI [intro]: "{x. a \<sim> x} \<in> quot"
   156 lemma quotI [intro]: "{x. a \<sim> x} \<in> quot"
   157   by (unfold quot_def) blast
   157   unfolding quot_def by blast
   158 
   158 
   159 lemma quotE [elim]: "R \<in> quot ==> (!!a. R = {x. a \<sim> x} ==> C) ==> C"
   159 lemma quotE [elim]: "R \<in> quot ==> (!!a. R = {x. a \<sim> x} ==> C) ==> C"
   160   by (unfold quot_def) blast
   160   unfolding quot_def by blast
   161 
   161 
   162 text {*
   162 text {*
   163   \medskip Abstracted equivalence classes are the canonical
   163   \medskip Abstracted equivalence classes are the canonical
   164   representation of elements of a quotient type.
   164   representation of elements of a quotient type.
   165 *}
   165 *}
   169   "\<lfloor>a\<rfloor> = Abs_quot {x. a \<sim> x}"
   169   "\<lfloor>a\<rfloor> = Abs_quot {x. a \<sim> x}"
   170 
   170 
   171 theorem quot_rep: "\<exists>a. A = \<lfloor>a\<rfloor>"
   171 theorem quot_rep: "\<exists>a. A = \<lfloor>a\<rfloor>"
   172 proof (cases A)
   172 proof (cases A)
   173   fix R assume R: "A = Abs_quot R"
   173   fix R assume R: "A = Abs_quot R"
   174   assume "R \<in> quot" hence "\<exists>a. R = {x. a \<sim> x}" by blast
   174   assume "R \<in> quot" then have "\<exists>a. R = {x. a \<sim> x}" by blast
   175   with R have "\<exists>a. A = Abs_quot {x. a \<sim> x}" by blast
   175   with R have "\<exists>a. A = Abs_quot {x. a \<sim> x}" by blast
   176   thus ?thesis by (unfold eqv_class_def)
   176   then show ?thesis by (unfold eqv_class_def)
   177 qed
   177 qed
   178 
   178 
   179 lemma quot_cases [case_names rep, cases type: quot]:
   179 lemma quot_cases [cases type: quot]:
   180     "(!!a. A = \<lfloor>a\<rfloor> ==> C) ==> C"
   180   obtains (rep) a where "A = \<lfloor>a\<rfloor>"
   181   by (insert quot_rep) blast
   181   using quot_rep by blast
   182 
   182 
   183 
   183 
   184 subsection {* Equality on quotients *}
   184 subsection {* Equality on quotients *}
   185 
   185 
   186 text {*
   186 text {*
   202       note ab
   202       note ab
   203       also assume "b \<sim> x"
   203       also assume "b \<sim> x"
   204       finally show "a \<sim> x" .
   204       finally show "a \<sim> x" .
   205     qed
   205     qed
   206   qed
   206   qed
   207   thus ?thesis by (simp only: eqv_class_def)
   207   then show ?thesis by (simp only: eqv_class_def)
   208 qed
   208 qed
   209 
   209 
   210 theorem eqv_class_eqD' [dest?]: "\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor> ==> a \<in> domain ==> a \<sim> b"
   210 theorem eqv_class_eqD' [dest?]: "\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor> ==> a \<in> domain ==> a \<sim> b"
   211 proof (unfold eqv_class_def)
   211 proof (unfold eqv_class_def)
   212   assume "Abs_quot {x. a \<sim> x} = Abs_quot {x. b \<sim> x}"
   212   assume "Abs_quot {x. a \<sim> x} = Abs_quot {x. b \<sim> x}"
   213   hence "{x. a \<sim> x} = {x. b \<sim> x}" by (simp only: Abs_quot_inject quotI)
   213   then have "{x. a \<sim> x} = {x. b \<sim> x}" by (simp only: Abs_quot_inject quotI)
   214   moreover assume "a \<in> domain" hence "a \<sim> a" ..
   214   moreover assume "a \<in> domain" then have "a \<sim> a" ..
   215   ultimately have "a \<in> {x. b \<sim> x}" by blast
   215   ultimately have "a \<in> {x. b \<sim> x}" by blast
   216   hence "b \<sim> a" by blast
   216   then have "b \<sim> a" by blast
   217   thus "a \<sim> b" ..
   217   then show "a \<sim> b" ..
   218 qed
   218 qed
   219 
   219 
   220 theorem eqv_class_eqD [dest?]: "\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor> ==> a \<sim> (b::'a::equiv)"
   220 theorem eqv_class_eqD [dest?]: "\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor> ==> a \<sim> (b::'a::equiv)"
   221 proof (rule eqv_class_eqD')
   221 proof (rule eqv_class_eqD')
   222   show "a \<in> domain" ..
   222   show "a \<in> domain" ..
   223 qed
   223 qed
   224 
   224 
   225 lemma eqv_class_eq' [simp]: "a \<in> domain ==> (\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>) = (a \<sim> b)"
   225 lemma eqv_class_eq' [simp]: "a \<in> domain ==> (\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>) = (a \<sim> b)"
   226   by (insert eqv_class_eqI eqv_class_eqD') blast
   226   using eqv_class_eqI eqv_class_eqD' by blast
   227 
   227 
   228 lemma eqv_class_eq [simp]: "(\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>) = (a \<sim> (b::'a::equiv))"
   228 lemma eqv_class_eq [simp]: "(\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>) = (a \<sim> (b::'a::equiv))"
   229   by (insert eqv_class_eqI eqv_class_eqD) blast
   229   using eqv_class_eqI eqv_class_eqD by blast
   230 
   230 
   231 
   231 
   232 subsection {* Picking representing elements *}
   232 subsection {* Picking representing elements *}
   233 
   233 
   234 definition
   234 definition
   240   assume a: "a \<in> domain"
   240   assume a: "a \<in> domain"
   241   show "(SOME x. \<lfloor>a\<rfloor> = \<lfloor>x\<rfloor>) \<sim> a"
   241   show "(SOME x. \<lfloor>a\<rfloor> = \<lfloor>x\<rfloor>) \<sim> a"
   242   proof (rule someI2)
   242   proof (rule someI2)
   243     show "\<lfloor>a\<rfloor> = \<lfloor>a\<rfloor>" ..
   243     show "\<lfloor>a\<rfloor> = \<lfloor>a\<rfloor>" ..
   244     fix x assume "\<lfloor>a\<rfloor> = \<lfloor>x\<rfloor>"
   244     fix x assume "\<lfloor>a\<rfloor> = \<lfloor>x\<rfloor>"
   245     hence "a \<sim> x" ..
   245     then have "a \<sim> x" ..
   246     thus "x \<sim> a" ..
   246     then show "x \<sim> a" ..
   247   qed
   247   qed
   248 qed
   248 qed
   249 
   249 
   250 theorem pick_eqv [intro, simp]: "pick \<lfloor>a\<rfloor> \<sim> (a::'a::equiv)"
   250 theorem pick_eqv [intro, simp]: "pick \<lfloor>a\<rfloor> \<sim> (a::'a::equiv)"
   251 proof (rule pick_eqv')
   251 proof (rule pick_eqv')
   253 qed
   253 qed
   254 
   254 
   255 theorem pick_inverse: "\<lfloor>pick A\<rfloor> = (A::'a::equiv quot)"
   255 theorem pick_inverse: "\<lfloor>pick A\<rfloor> = (A::'a::equiv quot)"
   256 proof (cases A)
   256 proof (cases A)
   257   fix a assume a: "A = \<lfloor>a\<rfloor>"
   257   fix a assume a: "A = \<lfloor>a\<rfloor>"
   258   hence "pick A \<sim> a" by simp
   258   then have "pick A \<sim> a" by simp
   259   hence "\<lfloor>pick A\<rfloor> = \<lfloor>a\<rfloor>" by simp
   259   then have "\<lfloor>pick A\<rfloor> = \<lfloor>a\<rfloor>" by simp
   260   with a show ?thesis by simp
   260   with a show ?thesis by simp
   261 qed
   261 qed
   262 
   262 
   263 end
   263 end