src/HOL/Library/Char_nat.thy
changeset 22799 ed7d53db2170
child 23394 474ff28210c0
equal deleted inserted replaced
22798:e3962371f568 22799:ed7d53db2170
       
     1 (*  Title:      HOL/Library/Char_nat.thy
       
     2     ID:         $Id$
       
     3     Author:     Norbert Voelker, Florian Haftmann
       
     4 *)
       
     5 
       
     6 header {* Mapping between characters and natural numbers *}
       
     7 
       
     8 theory Char_nat
       
     9 imports List
       
    10 begin
       
    11 
       
    12 text {* Conversions between nibbles and natural numbers in [0..15]. *}
       
    13 
       
    14 fun
       
    15   nat_of_nibble :: "nibble \<Rightarrow> nat" where
       
    16   "nat_of_nibble Nibble0 = 0"
       
    17   | "nat_of_nibble Nibble1 = 1"
       
    18   | "nat_of_nibble Nibble2 = 2"
       
    19   | "nat_of_nibble Nibble3 = 3"
       
    20   | "nat_of_nibble Nibble4 = 4"
       
    21   | "nat_of_nibble Nibble5 = 5"
       
    22   | "nat_of_nibble Nibble6 = 6"
       
    23   | "nat_of_nibble Nibble7 = 7"
       
    24   | "nat_of_nibble Nibble8 = 8"
       
    25   | "nat_of_nibble Nibble9 = 9"
       
    26   | "nat_of_nibble NibbleA = 10"
       
    27   | "nat_of_nibble NibbleB = 11"
       
    28   | "nat_of_nibble NibbleC = 12"
       
    29   | "nat_of_nibble NibbleD = 13"
       
    30   | "nat_of_nibble NibbleE = 14"
       
    31   | "nat_of_nibble NibbleF = 15"
       
    32 
       
    33 definition
       
    34   nibble_of_nat :: "nat \<Rightarrow> nibble" where
       
    35   "nibble_of_nat x = (let y = x mod 16 in
       
    36     if y = 0 then Nibble0 else
       
    37     if y = 1 then Nibble1 else
       
    38     if y = 2 then Nibble2 else
       
    39     if y = 3 then Nibble3 else
       
    40     if y = 4 then Nibble4 else
       
    41     if y = 5 then Nibble5 else
       
    42     if y = 6 then Nibble6 else
       
    43     if y = 7 then Nibble7 else
       
    44     if y = 8 then Nibble8 else
       
    45     if y = 9 then Nibble9 else
       
    46     if y = 10 then NibbleA else
       
    47     if y = 11 then NibbleB else
       
    48     if y = 12 then NibbleC else
       
    49     if y = 13 then NibbleD else
       
    50     if y = 14 then NibbleE else
       
    51     NibbleF)"
       
    52 
       
    53 lemma nibble_of_nat_norm:
       
    54   "nibble_of_nat (n mod 16) = nibble_of_nat n"
       
    55   unfolding nibble_of_nat_def Let_def by auto
       
    56 
       
    57 lemmas [code func] = nibble_of_nat_norm [symmetric]
       
    58 
       
    59 lemma nibble_of_nat_simps [simp]:
       
    60   "nibble_of_nat  0 = Nibble0"
       
    61   "nibble_of_nat  1 = Nibble1"
       
    62   "nibble_of_nat  2 = Nibble2"
       
    63   "nibble_of_nat  3 = Nibble3"
       
    64   "nibble_of_nat  4 = Nibble4"
       
    65   "nibble_of_nat  5 = Nibble5"
       
    66   "nibble_of_nat  6 = Nibble6"
       
    67   "nibble_of_nat  7 = Nibble7"
       
    68   "nibble_of_nat  8 = Nibble8"
       
    69   "nibble_of_nat  9 = Nibble9"
       
    70   "nibble_of_nat 10 = NibbleA"
       
    71   "nibble_of_nat 11 = NibbleB"
       
    72   "nibble_of_nat 12 = NibbleC"
       
    73   "nibble_of_nat 13 = NibbleD"
       
    74   "nibble_of_nat 14 = NibbleE"
       
    75   "nibble_of_nat 15 = NibbleF"
       
    76   unfolding nibble_of_nat_def Let_def by auto
       
    77 
       
    78 lemmas nibble_of_nat_code [code func] = nibble_of_nat_simps
       
    79   [simplified nat_number Let_def not_neg_number_of_Pls neg_number_of_BIT if_False add_0 add_Suc]
       
    80 
       
    81 lemma nibble_of_nat_of_nibble: "nibble_of_nat (nat_of_nibble n) = n"
       
    82   by (cases n) (simp_all only: nat_of_nibble.simps nibble_of_nat_simps)
       
    83 
       
    84 lemma nat_of_nibble_of_nat: "nat_of_nibble (nibble_of_nat n) = n mod 16"
       
    85 proof -
       
    86   have nibble_nat_enum: "n mod 16 \<in> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}"
       
    87   proof -
       
    88     have set_unfold: "\<And>n. {0..Suc n} = insert (Suc n) {0..n}" by auto
       
    89     have "(n\<Colon>nat) mod 16 \<in> {0..Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc
       
    90       (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))}" by simp
       
    91     from this [simplified set_unfold atLeastAtMost_singleton]
       
    92     show ?thesis by auto
       
    93   qed
       
    94   then show ?thesis unfolding nibble_of_nat_def Let_def
       
    95   by auto
       
    96 qed
       
    97 
       
    98 lemma inj_nat_of_nibble: "inj nat_of_nibble"
       
    99   by (rule inj_on_inverseI) (rule nibble_of_nat_of_nibble)
       
   100 
       
   101 lemma nat_of_nibble_eq: "nat_of_nibble n = nat_of_nibble m \<longleftrightarrow> n = m"
       
   102   by (rule inj_eq) (rule inj_nat_of_nibble)
       
   103 
       
   104 lemma nat_of_nibble_less_16: "nat_of_nibble n < 16"
       
   105   by (cases n) auto
       
   106 
       
   107 lemma nat_of_nibble_div_16: "nat_of_nibble n div 16 = 0"
       
   108   by (cases n) auto
       
   109 
       
   110 
       
   111 text {* Conversion between chars and nats. *}
       
   112 
       
   113 definition
       
   114   nibble_pair_of_nat :: "nat \<Rightarrow> nibble \<times> nibble"
       
   115 where
       
   116   "nibble_pair_of_nat n = (nibble_of_nat (n div 16), nibble_of_nat (n mod 16))"
       
   117 
       
   118 lemma nibble_of_pair [code func]:
       
   119   "nibble_pair_of_nat n = (nibble_of_nat (n div 16), nibble_of_nat n)"
       
   120   unfolding nibble_of_nat_norm [of n, symmetric] nibble_pair_of_nat_def ..
       
   121 
       
   122 fun
       
   123   nat_of_char :: "char \<Rightarrow> nat" where
       
   124   "nat_of_char (Char n m) = nat_of_nibble n * 16 + nat_of_nibble m"
       
   125 
       
   126 lemmas [simp del] = nat_of_char.simps
       
   127 
       
   128 definition
       
   129   char_of_nat :: "nat \<Rightarrow> char" where
       
   130   char_of_nat_def: "char_of_nat n = split Char (nibble_pair_of_nat n)"
       
   131 
       
   132 lemma Char_char_of_nat:
       
   133   "Char n m = char_of_nat (nat_of_nibble n * 16 + nat_of_nibble m)"
       
   134   unfolding char_of_nat_def Let_def nibble_pair_of_nat_def
       
   135   by (auto simp add: div_add1_eq mod_add1_eq nat_of_nibble_div_16 nibble_of_nat_norm nibble_of_nat_of_nibble)
       
   136 
       
   137 lemma char_of_nat_of_char:
       
   138   "char_of_nat (nat_of_char c) = c"
       
   139   by (cases c) (simp add: nat_of_char.simps, simp add: Char_char_of_nat)
       
   140 
       
   141 lemma nat_of_char_of_nat:
       
   142   "nat_of_char (char_of_nat n) = n mod 256"
       
   143 proof -
       
   144   from mod_div_equality [of n, symmetric, of 16]
       
   145   have mod_mult_self3: "\<And>m k n \<Colon> nat. (k * n + m) mod n = m mod n"
       
   146   proof -
       
   147     fix m k n :: nat
       
   148     show "(k * n + m) mod n = m mod n"
       
   149     by (simp only: mod_mult_self1 [symmetric, of m n k] add_commute)
       
   150   qed
       
   151   from mod_div_decomp [of n 256] obtain k l where n: "n = k * 256 + l"
       
   152     and k: "k = n div 256" and l: "l = n mod 256" by blast
       
   153   have 16: "(0::nat) < 16" by auto
       
   154   have 256: "(256 :: nat) = 16 * 16" by auto
       
   155   have l_256: "l mod 256 = l" using l by auto
       
   156   have l_div_256: "l div 16 * 16 mod 256 = l div 16 * 16"
       
   157     using l by auto
       
   158   have aux2: "(k * 256 mod 16 + l mod 16) div 16 = 0"
       
   159     unfolding 256 mult_assoc [symmetric] mod_mult_self_is_0 by simp
       
   160   have aux3: "(k * 256 + l) div 16 = k * 16 + l div 16"
       
   161     unfolding div_add1_eq [of "k * 256" l 16] aux2 256
       
   162       mult_assoc [symmetric] div_mult_self_is_m [OF 16] by simp
       
   163   have aux4: "(k * 256 + l) mod 16 = l mod 16"
       
   164     unfolding 256 mult_assoc [symmetric] mod_mult_self3 ..
       
   165   show ?thesis
       
   166   by (simp add: nat_of_char.simps char_of_nat_def nibble_of_pair nat_of_nibble_of_nat mod_mult_distrib
       
   167     n aux3 mod_mult_self3 l_256 aux4 mod_add1_eq [of "256 * k"] l_div_256)
       
   168 qed
       
   169 
       
   170 lemma nibble_pair_of_nat_char:
       
   171   "nibble_pair_of_nat (nat_of_char (Char n m)) = (n, m)"
       
   172 proof -
       
   173   have nat_of_nibble_256:
       
   174     "\<And>n m. (nat_of_nibble n * 16 + nat_of_nibble m) mod 256 = nat_of_nibble n * 16 + nat_of_nibble m"
       
   175   proof -
       
   176     fix n m
       
   177     have nat_of_nibble_less_eq_15: "\<And>n. nat_of_nibble n \<le> 15"
       
   178     using Suc_leI [OF nat_of_nibble_less_16] by (auto simp add: nat_number)
       
   179     have less_eq_240: "nat_of_nibble n * 16 \<le> 240" using nat_of_nibble_less_eq_15 by auto
       
   180     have "nat_of_nibble n * 16 + nat_of_nibble m \<le> 240 + 15"
       
   181     by (rule add_le_mono [of _ 240 _ 15]) (auto intro: nat_of_nibble_less_eq_15 less_eq_240)
       
   182     then have "nat_of_nibble n * 16 + nat_of_nibble m < 256" (is "?rhs < _") by auto
       
   183     then show "?rhs mod 256 = ?rhs" by auto
       
   184   qed
       
   185   show ?thesis
       
   186   unfolding nibble_pair_of_nat_def Char_char_of_nat nat_of_char_of_nat nat_of_nibble_256
       
   187   by (simp add: add_commute nat_of_nibble_div_16 nibble_of_nat_norm nibble_of_nat_of_nibble)
       
   188 qed
       
   189 
       
   190 
       
   191 text {* Code generator setup *}
       
   192 
       
   193 code_modulename SML
       
   194   Char_nat List
       
   195 
       
   196 code_modulename OCaml
       
   197   Char_nat List
       
   198 
       
   199 code_modulename Haskell
       
   200   Char_nat List
       
   201 
       
   202 end