src/HOL/Nat.thy
changeset 13596 ee5f79b210c1
parent 13585 db4005b40cc6
child 14131 a4fc8b1af5e7
equal deleted inserted replaced
13595:7e6cdcd113a2 13596:ee5f79b210c1
   446 
   446 
   447 lemma le_trans: "[| i <= j; j <= k |] ==> i <= (k::nat)"
   447 lemma le_trans: "[| i <= j; j <= k |] ==> i <= (k::nat)"
   448   by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans)
   448   by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans)
   449 
   449 
   450 lemma le_anti_sym: "[| m <= n; n <= m |] ==> m = (n::nat)"
   450 lemma le_anti_sym: "[| m <= n; n <= m |] ==> m = (n::nat)"
   451   -- {* @{text order_less_irrefl} could make this proof fail *}
       
   452   by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym)
   451   by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym)
   453 
   452 
   454 lemma Suc_le_mono [iff]: "(Suc n <= Suc m) = (n <= m)"
   453 lemma Suc_le_mono [iff]: "(Suc n <= Suc m) = (n <= m)"
   455   by (simp add: le_simps)
   454   by (simp add: le_simps)
   456 
   455