equal
deleted
inserted
replaced
1961 by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr) |
1961 by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr) |
1962 |
1962 |
1963 lemma ln_powr: "ln (x powr y) = y * ln x" |
1963 lemma ln_powr: "ln (x powr y) = y * ln x" |
1964 by (simp add: powr_def) |
1964 by (simp add: powr_def) |
1965 |
1965 |
|
1966 lemma ln_root: "\<lbrakk> n > 0; b > 0 \<rbrakk> \<Longrightarrow> ln (root n b) = ln b / n" |
|
1967 by(simp add: root_powr_inverse ln_powr) |
|
1968 |
|
1969 lemma log_root: "\<lbrakk> n > 0; a > 0 \<rbrakk> \<Longrightarrow> log b (root n a) = log b a / n" |
|
1970 by(simp add: log_def ln_root) |
|
1971 |
1966 lemma log_powr: "log b (x powr y) = y * log b x" |
1972 lemma log_powr: "log b (x powr y) = y * log b x" |
1967 by (simp add: log_def ln_powr) |
1973 by (simp add: log_def ln_powr) |
1968 |
1974 |
1969 lemma log_nat_power: "0 < x \<Longrightarrow> log b (x ^ n) = real n * log b x" |
1975 lemma log_nat_power: "0 < x \<Longrightarrow> log b (x ^ n) = real n * log b x" |
1970 by (simp add: log_powr powr_realpow [symmetric]) |
1976 by (simp add: log_powr powr_realpow [symmetric]) |
1975 lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n" |
1981 lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n" |
1976 by (simp add: log_def ln_realpow) |
1982 by (simp add: log_def ln_realpow) |
1977 |
1983 |
1978 lemma log_base_powr: "log (a powr b) x = log a x / b" |
1984 lemma log_base_powr: "log (a powr b) x = log a x / b" |
1979 by (simp add: log_def ln_powr) |
1985 by (simp add: log_def ln_powr) |
|
1986 |
|
1987 lemma log_base_root: "\<lbrakk> n > 0; b > 0 \<rbrakk> \<Longrightarrow> log (root n b) x = n * (log b x)" |
|
1988 by(simp add: log_def ln_root) |
1980 |
1989 |
1981 lemma ln_bound: "1 <= x ==> ln x <= x" |
1990 lemma ln_bound: "1 <= x ==> ln x <= x" |
1982 apply (subgoal_tac "ln(1 + (x - 1)) <= x - 1") |
1991 apply (subgoal_tac "ln(1 + (x - 1)) <= x - 1") |
1983 apply simp |
1992 apply simp |
1984 apply (rule ln_add_one_self_le_self, simp) |
1993 apply (rule ln_add_one_self_le_self, simp) |