src/HOL/HOLCF/IOA/meta_theory/TL.thy
changeset 62002 f1599e98c4d0
parent 62001 1f2788fb0b8b
child 62004 8c6226d88ced
equal deleted inserted replaced
62001:1f2788fb0b8b 62002:f1599e98c4d0
     1 (*  Title:      HOL/HOLCF/IOA/meta_theory/TL.thy
     1 (*  Title:      HOL/HOLCF/IOA/meta_theory/TL.thy
     2     Author:     Olaf Müller
     2     Author:     Olaf Müller
     3 *)
     3 *)
     4 
     4 
     5 section {* A General Temporal Logic *}
     5 section \<open>A General Temporal Logic\<close>
     6 
     6 
     7 theory TL
     7 theory TL
     8 imports Pred Sequence
     8 imports Pred Sequence
     9 begin
     9 begin
    10 
    10 
   145 
   145 
   146 lemma tsuffix_TL [rule_format (no_asm)]: 
   146 lemma tsuffix_TL [rule_format (no_asm)]: 
   147 "s~=UU & s~=nil --> tsuffix s2 (TL$s) --> tsuffix s2 s"
   147 "s~=UU & s~=nil --> tsuffix s2 (TL$s) --> tsuffix s2 s"
   148 apply (unfold tsuffix_def suffix_def)
   148 apply (unfold tsuffix_def suffix_def)
   149 apply auto
   149 apply auto
   150 apply (tactic {* Seq_case_simp_tac @{context} "s" 1 *})
   150 apply (tactic \<open>Seq_case_simp_tac @{context} "s" 1\<close>)
   151 apply (rule_tac x = "a\<leadsto>s1" in exI)
   151 apply (rule_tac x = "a\<leadsto>s1" in exI)
   152 apply auto
   152 apply auto
   153 done
   153 done
   154 
   154 
   155 lemmas tsuffix_TL2 = conjI [THEN tsuffix_TL]
   155 lemmas tsuffix_TL2 = conjI [THEN tsuffix_TL]