3 Copyright 1998 University of Cambridge |
3 Copyright 1998 University of Cambridge |
4 |
4 |
5 Weak LeadsTo relation (restricted to the set of reachable states) |
5 Weak LeadsTo relation (restricted to the set of reachable states) |
6 *) |
6 *) |
7 |
7 |
8 section{*Weak Progress*} |
8 section\<open>Weak Progress\<close> |
9 |
9 |
10 theory SubstAx imports WFair Constrains begin |
10 theory SubstAx imports WFair Constrains begin |
11 |
11 |
12 definition Ensures :: "['a set, 'a set] => 'a program set" (infixl "Ensures" 60) where |
12 definition Ensures :: "['a set, 'a set] => 'a program set" (infixl "Ensures" 60) where |
13 "A Ensures B == {F. F \<in> (reachable F \<inter> A) ensures B}" |
13 "A Ensures B == {F. F \<in> (reachable F \<inter> A) ensures B}" |
16 "A LeadsTo B == {F. F \<in> (reachable F \<inter> A) leadsTo B}" |
16 "A LeadsTo B == {F. F \<in> (reachable F \<inter> A) leadsTo B}" |
17 |
17 |
18 notation LeadsTo (infixl "\<longmapsto>w" 60) |
18 notation LeadsTo (infixl "\<longmapsto>w" 60) |
19 |
19 |
20 |
20 |
21 text{*Resembles the previous definition of LeadsTo*} |
21 text\<open>Resembles the previous definition of LeadsTo\<close> |
22 lemma LeadsTo_eq_leadsTo: |
22 lemma LeadsTo_eq_leadsTo: |
23 "A LeadsTo B = {F. F \<in> (reachable F \<inter> A) leadsTo (reachable F \<inter> B)}" |
23 "A LeadsTo B = {F. F \<in> (reachable F \<inter> A) leadsTo (reachable F \<inter> B)}" |
24 apply (unfold LeadsTo_def) |
24 apply (unfold LeadsTo_def) |
25 apply (blast dest: psp_stable2 intro: leadsTo_weaken) |
25 apply (blast dest: psp_stable2 intro: leadsTo_weaken) |
26 done |
26 done |
27 |
27 |
28 |
28 |
29 subsection{*Specialized laws for handling invariants*} |
29 subsection\<open>Specialized laws for handling invariants\<close> |
30 |
30 |
31 (** Conjoining an Always property **) |
31 (** Conjoining an Always property **) |
32 |
32 |
33 lemma Always_LeadsTo_pre: |
33 lemma Always_LeadsTo_pre: |
34 "F \<in> Always INV ==> (F \<in> (INV \<inter> A) LeadsTo A') = (F \<in> A LeadsTo A')" |
34 "F \<in> Always INV ==> (F \<in> (INV \<inter> A) LeadsTo A') = (F \<in> A LeadsTo A')" |
45 |
45 |
46 (* [| F \<in> Always INV; F \<in> A LeadsTo A' |] ==> F \<in> A LeadsTo (INV \<inter> A') *) |
46 (* [| F \<in> Always INV; F \<in> A LeadsTo A' |] ==> F \<in> A LeadsTo (INV \<inter> A') *) |
47 lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2] |
47 lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2] |
48 |
48 |
49 |
49 |
50 subsection{*Introduction rules: Basis, Trans, Union*} |
50 subsection\<open>Introduction rules: Basis, Trans, Union\<close> |
51 |
51 |
52 lemma leadsTo_imp_LeadsTo: "F \<in> A leadsTo B ==> F \<in> A LeadsTo B" |
52 lemma leadsTo_imp_LeadsTo: "F \<in> A leadsTo B ==> F \<in> A LeadsTo B" |
53 apply (simp add: LeadsTo_def) |
53 apply (simp add: LeadsTo_def) |
54 apply (blast intro: leadsTo_weaken_L) |
54 apply (blast intro: leadsTo_weaken_L) |
55 done |
55 done |
66 apply (subst Int_Union) |
66 apply (subst Int_Union) |
67 apply (blast intro: leadsTo_UN) |
67 apply (blast intro: leadsTo_UN) |
68 done |
68 done |
69 |
69 |
70 |
70 |
71 subsection{*Derived rules*} |
71 subsection\<open>Derived rules\<close> |
72 |
72 |
73 lemma LeadsTo_UNIV [simp]: "F \<in> A LeadsTo UNIV" |
73 lemma LeadsTo_UNIV [simp]: "F \<in> A LeadsTo UNIV" |
74 by (simp add: LeadsTo_def) |
74 by (simp add: LeadsTo_def) |
75 |
75 |
76 text{*Useful with cancellation, disjunction*} |
76 text\<open>Useful with cancellation, disjunction\<close> |
77 lemma LeadsTo_Un_duplicate: |
77 lemma LeadsTo_Un_duplicate: |
78 "F \<in> A LeadsTo (A' \<union> A') ==> F \<in> A LeadsTo A'" |
78 "F \<in> A LeadsTo (A' \<union> A') ==> F \<in> A LeadsTo A'" |
79 by (simp add: Un_ac) |
79 by (simp add: Un_ac) |
80 |
80 |
81 lemma LeadsTo_Un_duplicate2: |
81 lemma LeadsTo_Un_duplicate2: |
85 lemma LeadsTo_UN: |
85 lemma LeadsTo_UN: |
86 "(!!i. i \<in> I ==> F \<in> (A i) LeadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) LeadsTo B" |
86 "(!!i. i \<in> I ==> F \<in> (A i) LeadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) LeadsTo B" |
87 apply (blast intro: LeadsTo_Union) |
87 apply (blast intro: LeadsTo_Union) |
88 done |
88 done |
89 |
89 |
90 text{*Binary union introduction rule*} |
90 text\<open>Binary union introduction rule\<close> |
91 lemma LeadsTo_Un: |
91 lemma LeadsTo_Un: |
92 "[| F \<in> A LeadsTo C; F \<in> B LeadsTo C |] ==> F \<in> (A \<union> B) LeadsTo C" |
92 "[| F \<in> A LeadsTo C; F \<in> B LeadsTo C |] ==> F \<in> (A \<union> B) LeadsTo C" |
93 using LeadsTo_UN [of "{A, B}" F id C] by auto |
93 using LeadsTo_UN [of "{A, B}" F id C] by auto |
94 |
94 |
95 text{*Lets us look at the starting state*} |
95 text\<open>Lets us look at the starting state\<close> |
96 lemma single_LeadsTo_I: |
96 lemma single_LeadsTo_I: |
97 "(!!s. s \<in> A ==> F \<in> {s} LeadsTo B) ==> F \<in> A LeadsTo B" |
97 "(!!s. s \<in> A ==> F \<in> {s} LeadsTo B) ==> F \<in> A LeadsTo B" |
98 by (subst UN_singleton [symmetric], rule LeadsTo_UN, blast) |
98 by (subst UN_singleton [symmetric], rule LeadsTo_UN, blast) |
99 |
99 |
100 lemma subset_imp_LeadsTo: "A \<subseteq> B ==> F \<in> A LeadsTo B" |
100 lemma subset_imp_LeadsTo: "A \<subseteq> B ==> F \<in> A LeadsTo B" |
174 ==> F \<in> A LeadsTo A'" |
174 ==> F \<in> A LeadsTo A'" |
175 apply (rule Always_LeadsToI, assumption) |
175 apply (rule Always_LeadsToI, assumption) |
176 apply (blast intro: EnsuresI LeadsTo_Basis Always_ConstrainsD [THEN Constrains_weaken] transient_strengthen) |
176 apply (blast intro: EnsuresI LeadsTo_Basis Always_ConstrainsD [THEN Constrains_weaken] transient_strengthen) |
177 done |
177 done |
178 |
178 |
179 text{*Set difference: maybe combine with @{text leadsTo_weaken_L}?? |
179 text\<open>Set difference: maybe combine with \<open>leadsTo_weaken_L\<close>?? |
180 This is the most useful form of the "disjunction" rule*} |
180 This is the most useful form of the "disjunction" rule\<close> |
181 lemma LeadsTo_Diff: |
181 lemma LeadsTo_Diff: |
182 "[| F \<in> (A-B) LeadsTo C; F \<in> (A \<inter> B) LeadsTo C |] |
182 "[| F \<in> (A-B) LeadsTo C; F \<in> (A \<inter> B) LeadsTo C |] |
183 ==> F \<in> A LeadsTo C" |
183 ==> F \<in> A LeadsTo C" |
184 by (blast intro: LeadsTo_Un LeadsTo_weaken) |
184 by (blast intro: LeadsTo_Un LeadsTo_weaken) |
185 |
185 |
189 ==> F \<in> (\<Union>i \<in> I. A i) LeadsTo (\<Union>i \<in> I. A' i)" |
189 ==> F \<in> (\<Union>i \<in> I. A i) LeadsTo (\<Union>i \<in> I. A' i)" |
190 apply (blast intro: LeadsTo_Union LeadsTo_weaken_R) |
190 apply (blast intro: LeadsTo_Union LeadsTo_weaken_R) |
191 done |
191 done |
192 |
192 |
193 |
193 |
194 text{*Version with no index set*} |
194 text\<open>Version with no index set\<close> |
195 lemma LeadsTo_UN_UN_noindex: |
195 lemma LeadsTo_UN_UN_noindex: |
196 "(!!i. F \<in> (A i) LeadsTo (A' i)) ==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)" |
196 "(!!i. F \<in> (A i) LeadsTo (A' i)) ==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)" |
197 by (blast intro: LeadsTo_UN_UN) |
197 by (blast intro: LeadsTo_UN_UN) |
198 |
198 |
199 text{*Version with no index set*} |
199 text\<open>Version with no index set\<close> |
200 lemma all_LeadsTo_UN_UN: |
200 lemma all_LeadsTo_UN_UN: |
201 "\<forall>i. F \<in> (A i) LeadsTo (A' i) |
201 "\<forall>i. F \<in> (A i) LeadsTo (A' i) |
202 ==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)" |
202 ==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)" |
203 by (blast intro: LeadsTo_UN_UN) |
203 by (blast intro: LeadsTo_UN_UN) |
204 |
204 |
205 text{*Binary union version*} |
205 text\<open>Binary union version\<close> |
206 lemma LeadsTo_Un_Un: |
206 lemma LeadsTo_Un_Un: |
207 "[| F \<in> A LeadsTo A'; F \<in> B LeadsTo B' |] |
207 "[| F \<in> A LeadsTo A'; F \<in> B LeadsTo B' |] |
208 ==> F \<in> (A \<union> B) LeadsTo (A' \<union> B')" |
208 ==> F \<in> (A \<union> B) LeadsTo (A' \<union> B')" |
209 by (blast intro: LeadsTo_Un LeadsTo_weaken_R) |
209 by (blast intro: LeadsTo_Un LeadsTo_weaken_R) |
210 |
210 |
238 prefer 2 apply assumption |
238 prefer 2 apply assumption |
239 apply (simp_all (no_asm_simp)) |
239 apply (simp_all (no_asm_simp)) |
240 done |
240 done |
241 |
241 |
242 |
242 |
243 text{*The impossibility law*} |
243 text\<open>The impossibility law\<close> |
244 |
244 |
245 text{*The set "A" may be non-empty, but it contains no reachable states*} |
245 text\<open>The set "A" may be non-empty, but it contains no reachable states\<close> |
246 lemma LeadsTo_empty: "[|F \<in> A LeadsTo {}; all_total F|] ==> F \<in> Always (-A)" |
246 lemma LeadsTo_empty: "[|F \<in> A LeadsTo {}; all_total F|] ==> F \<in> Always (-A)" |
247 apply (simp add: LeadsTo_def Always_eq_includes_reachable) |
247 apply (simp add: LeadsTo_def Always_eq_includes_reachable) |
248 apply (drule leadsTo_empty, auto) |
248 apply (drule leadsTo_empty, auto) |
249 done |
249 done |
250 |
250 |
251 |
251 |
252 subsection{*PSP: Progress-Safety-Progress*} |
252 subsection\<open>PSP: Progress-Safety-Progress\<close> |
253 |
253 |
254 text{*Special case of PSP: Misra's "stable conjunction"*} |
254 text\<open>Special case of PSP: Misra's "stable conjunction"\<close> |
255 lemma PSP_Stable: |
255 lemma PSP_Stable: |
256 "[| F \<in> A LeadsTo A'; F \<in> Stable B |] |
256 "[| F \<in> A LeadsTo A'; F \<in> Stable B |] |
257 ==> F \<in> (A \<inter> B) LeadsTo (A' \<inter> B)" |
257 ==> F \<in> (A \<inter> B) LeadsTo (A' \<inter> B)" |
258 apply (simp add: LeadsTo_eq_leadsTo Stable_eq_stable) |
258 apply (simp add: LeadsTo_eq_leadsTo Stable_eq_stable) |
259 apply (drule psp_stable, assumption) |
259 apply (drule psp_stable, assumption) |
296 transient_imp_leadsTo [THEN leadsTo_imp_LeadsTo, THEN PSP_Stable2]) |
296 transient_imp_leadsTo [THEN leadsTo_imp_LeadsTo, THEN PSP_Stable2]) |
297 apply (blast intro: subset_imp_LeadsTo)+ |
297 apply (blast intro: subset_imp_LeadsTo)+ |
298 done |
298 done |
299 |
299 |
300 |
300 |
301 subsection{*Induction rules*} |
301 subsection\<open>Induction rules\<close> |
302 |
302 |
303 (** Meta or object quantifier ????? **) |
303 (** Meta or object quantifier ????? **) |
304 lemma LeadsTo_wf_induct: |
304 lemma LeadsTo_wf_induct: |
305 "[| wf r; |
305 "[| wf r; |
306 \<forall>m. F \<in> (A \<inter> f-`{m}) LeadsTo |
306 \<forall>m. F \<in> (A \<inter> f-`{m}) LeadsTo |
327 lemma LessThan_induct: |
327 lemma LessThan_induct: |
328 "(!!m::nat. F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(lessThan m)) \<union> B)) |
328 "(!!m::nat. F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(lessThan m)) \<union> B)) |
329 ==> F \<in> A LeadsTo B" |
329 ==> F \<in> A LeadsTo B" |
330 by (rule wf_less_than [THEN LeadsTo_wf_induct], auto) |
330 by (rule wf_less_than [THEN LeadsTo_wf_induct], auto) |
331 |
331 |
332 text{*Integer version. Could generalize from 0 to any lower bound*} |
332 text\<open>Integer version. Could generalize from 0 to any lower bound\<close> |
333 lemma integ_0_le_induct: |
333 lemma integ_0_le_induct: |
334 "[| F \<in> Always {s. (0::int) \<le> f s}; |
334 "[| F \<in> Always {s. (0::int) \<le> f s}; |
335 !! z. F \<in> (A \<inter> {s. f s = z}) LeadsTo |
335 !! z. F \<in> (A \<inter> {s. f s = z}) LeadsTo |
336 ((A \<inter> {s. f s < z}) \<union> B) |] |
336 ((A \<inter> {s. f s < z}) \<union> B) |] |
337 ==> F \<in> A LeadsTo B" |
337 ==> F \<in> A LeadsTo B" |
361 apply (blast intro: LeadsTo_weaken_R diff_less_mono2) |
361 apply (blast intro: LeadsTo_weaken_R diff_less_mono2) |
362 apply (blast intro: not_le_imp_less subset_imp_LeadsTo) |
362 apply (blast intro: not_le_imp_less subset_imp_LeadsTo) |
363 done |
363 done |
364 |
364 |
365 |
365 |
366 subsection{*Completion: Binary and General Finite versions*} |
366 subsection\<open>Completion: Binary and General Finite versions\<close> |
367 |
367 |
368 lemma Completion: |
368 lemma Completion: |
369 "[| F \<in> A LeadsTo (A' \<union> C); F \<in> A' Co (A' \<union> C); |
369 "[| F \<in> A LeadsTo (A' \<union> C); F \<in> A' Co (A' \<union> C); |
370 F \<in> B LeadsTo (B' \<union> C); F \<in> B' Co (B' \<union> C) |] |
370 F \<in> B LeadsTo (B' \<union> C); F \<in> B' Co (B' \<union> C) |] |
371 ==> F \<in> (A \<inter> B) LeadsTo ((A' \<inter> B') \<union> C)" |
371 ==> F \<in> (A \<inter> B) LeadsTo ((A' \<inter> B') \<union> C)" |