equal
deleted
inserted
replaced
321 |
321 |
322 lemma m_o_h: "finite X \<Longrightarrow> m_o X opt \<le> (h*card X + 1)" |
322 lemma m_o_h: "finite X \<Longrightarrow> m_o X opt \<le> (h*card X + 1)" |
323 by(cases opt)(auto simp add: m_s_h le_SucI dest: m_s_h) |
323 by(cases opt)(auto simp add: m_s_h le_SucI dest: m_s_h) |
324 |
324 |
325 definition m_c :: "'av st option acom \<Rightarrow> nat" ("m\<^isub>c") where |
325 definition m_c :: "'av st option acom \<Rightarrow> nat" ("m\<^isub>c") where |
326 "m_c C = (\<Sum>i<size(annos C). m_o (vars C) (annos C ! i))" |
326 "m_c C = listsum (map (m_o (vars C)) (annos C))" |
327 |
327 |
328 text{* Upper complexity bound: *} |
328 text{* Upper complexity bound: *} |
329 lemma m_c_h: "m_c C \<le> size(annos C) * (h * card(vars C) + 1)" |
329 lemma m_c_h: "m_c C \<le> size(annos C) * (h * card(vars C) + 1)" |
330 proof- |
330 proof- |
331 let ?X = "vars C" let ?n = "card ?X" let ?a = "size(annos C)" |
331 let ?X = "vars C" let ?n = "card ?X" let ?a = "size(annos C)" |
332 have "m_c C = (\<Sum>i<?a. m_o ?X (annos C ! i))" by(simp add: m_c_def) |
332 have "m_c C = (\<Sum>i<?a. m_o ?X (annos C ! i))" |
|
333 by(simp add: m_c_def listsum_setsum_nth atLeast0LessThan) |
333 also have "\<dots> \<le> (\<Sum>i<?a. h * ?n + 1)" |
334 also have "\<dots> \<le> (\<Sum>i<?a. h * ?n + 1)" |
334 apply(rule setsum_mono) using m_o_h[OF finite_Cvars] by simp |
335 apply(rule setsum_mono) using m_o_h[OF finite_Cvars] by simp |
335 also have "\<dots> = ?a * (h * ?n + 1)" by simp |
336 also have "\<dots> = ?a * (h * ?n + 1)" by simp |
336 finally show ?thesis . |
337 finally show ?thesis . |
337 qed |
338 qed |
434 by(auto simp: le_less m_o2) |
435 by(auto simp: le_less m_o2) |
435 |
436 |
436 |
437 |
437 lemma m_c2: "top_on_acom (-vars C1) C1 \<Longrightarrow> top_on_acom (-vars C2) C2 \<Longrightarrow> |
438 lemma m_c2: "top_on_acom (-vars C1) C1 \<Longrightarrow> top_on_acom (-vars C2) C2 \<Longrightarrow> |
438 C1 < C2 \<Longrightarrow> m_c C1 > m_c C2" |
439 C1 < C2 \<Longrightarrow> m_c C1 > m_c C2" |
439 proof(auto simp add: le_iff_le_annos m_c_def size_annos_same[of C1 C2] vars_acom_def less_acom_def) |
440 proof(auto simp add: le_iff_le_annos size_annos_same[of C1 C2] vars_acom_def less_acom_def) |
440 let ?X = "vars(strip C2)" |
441 let ?X = "vars(strip C2)" |
441 assume top: "top_on_acom (- vars(strip C2)) C1" "top_on_acom (- vars(strip C2)) C2" |
442 assume top: "top_on_acom (- vars(strip C2)) C1" "top_on_acom (- vars(strip C2)) C2" |
442 and strip_eq: "strip C1 = strip C2" |
443 and strip_eq: "strip C1 = strip C2" |
443 and 0: "\<forall>i<size(annos C2). annos C1 ! i \<le> annos C2 ! i" |
444 and 0: "\<forall>i<size(annos C2). annos C1 ! i \<le> annos C2 ! i" |
444 hence 1: "\<forall>i<size(annos C2). m_o ?X (annos C1 ! i) \<ge> m_o ?X (annos C2 ! i)" |
445 hence 1: "\<forall>i<size(annos C2). m_o ?X (annos C1 ! i) \<ge> m_o ?X (annos C2 ! i)" |
450 have topo2: "top_on_opt (- ?X) (annos C2 ! i)" |
451 have topo2: "top_on_opt (- ?X) (annos C2 ! i)" |
451 using i(1) top(2) by(simp add: top_on_acom_def size_annos_same[OF strip_eq]) |
452 using i(1) top(2) by(simp add: top_on_acom_def size_annos_same[OF strip_eq]) |
452 from i have "m_o ?X (annos C1 ! i) > m_o ?X (annos C2 ! i)" (is "?P i") |
453 from i have "m_o ?X (annos C1 ! i) > m_o ?X (annos C2 ! i)" (is "?P i") |
453 by (metis 0 less_option_def m_o2[OF finite_cvars topo1] topo2) |
454 by (metis 0 less_option_def m_o2[OF finite_cvars topo1] topo2) |
454 hence 2: "\<exists>i < size(annos C2). ?P i" using `i < size(annos C2)` by blast |
455 hence 2: "\<exists>i < size(annos C2). ?P i" using `i < size(annos C2)` by blast |
455 show "(\<Sum>i<size(annos C2). m_o ?X (annos C2 ! i)) |
456 have "(\<Sum>i<size(annos C2). m_o ?X (annos C2 ! i)) |
456 < (\<Sum>i<size(annos C2). m_o ?X (annos C1 ! i))" |
457 < (\<Sum>i<size(annos C2). m_o ?X (annos C1 ! i))" |
457 apply(rule setsum_strict_mono_ex1) using 1 2 by (auto) |
458 apply(rule setsum_strict_mono_ex1) using 1 2 by (auto) |
|
459 thus ?thesis |
|
460 by(simp add: m_c_def vars_acom_def strip_eq listsum_setsum_nth atLeast0LessThan size_annos_same[OF strip_eq]) |
458 qed |
461 qed |
459 |
462 |
460 end |
463 end |
461 |
464 |
462 |
465 |