src/HOL/IMP/Abs_Int0.thy
changeset 51783 f4a00cdae743
parent 51754 39133c710fa3
child 51785 9685a5b1f7ce
equal deleted inserted replaced
51782:84e7225f5ab6 51783:f4a00cdae743
   321 
   321 
   322 lemma m_o_h: "finite X \<Longrightarrow> m_o X opt \<le> (h*card X + 1)"
   322 lemma m_o_h: "finite X \<Longrightarrow> m_o X opt \<le> (h*card X + 1)"
   323 by(cases opt)(auto simp add: m_s_h le_SucI dest: m_s_h)
   323 by(cases opt)(auto simp add: m_s_h le_SucI dest: m_s_h)
   324 
   324 
   325 definition m_c :: "'av st option acom \<Rightarrow> nat" ("m\<^isub>c") where
   325 definition m_c :: "'av st option acom \<Rightarrow> nat" ("m\<^isub>c") where
   326 "m_c C = (\<Sum>i<size(annos C). m_o (vars C) (annos C ! i))"
   326 "m_c C = listsum (map (m_o (vars C)) (annos C))"
   327 
   327 
   328 text{* Upper complexity bound: *}
   328 text{* Upper complexity bound: *}
   329 lemma m_c_h: "m_c C \<le> size(annos C) * (h * card(vars C) + 1)"
   329 lemma m_c_h: "m_c C \<le> size(annos C) * (h * card(vars C) + 1)"
   330 proof-
   330 proof-
   331   let ?X = "vars C" let ?n = "card ?X" let ?a = "size(annos C)"
   331   let ?X = "vars C" let ?n = "card ?X" let ?a = "size(annos C)"
   332   have "m_c C = (\<Sum>i<?a. m_o ?X (annos C ! i))" by(simp add: m_c_def)
   332   have "m_c C = (\<Sum>i<?a. m_o ?X (annos C ! i))"
       
   333     by(simp add: m_c_def listsum_setsum_nth atLeast0LessThan)
   333   also have "\<dots> \<le> (\<Sum>i<?a. h * ?n + 1)"
   334   also have "\<dots> \<le> (\<Sum>i<?a. h * ?n + 1)"
   334     apply(rule setsum_mono) using m_o_h[OF finite_Cvars] by simp
   335     apply(rule setsum_mono) using m_o_h[OF finite_Cvars] by simp
   335   also have "\<dots> = ?a * (h * ?n + 1)" by simp
   336   also have "\<dots> = ?a * (h * ?n + 1)" by simp
   336   finally show ?thesis .
   337   finally show ?thesis .
   337 qed
   338 qed
   434 by(auto simp: le_less m_o2)
   435 by(auto simp: le_less m_o2)
   435 
   436 
   436 
   437 
   437 lemma m_c2: "top_on_acom (-vars C1) C1 \<Longrightarrow> top_on_acom (-vars C2) C2 \<Longrightarrow>
   438 lemma m_c2: "top_on_acom (-vars C1) C1 \<Longrightarrow> top_on_acom (-vars C2) C2 \<Longrightarrow>
   438   C1 < C2 \<Longrightarrow> m_c C1 > m_c C2"
   439   C1 < C2 \<Longrightarrow> m_c C1 > m_c C2"
   439 proof(auto simp add: le_iff_le_annos m_c_def size_annos_same[of C1 C2] vars_acom_def less_acom_def)
   440 proof(auto simp add: le_iff_le_annos size_annos_same[of C1 C2] vars_acom_def less_acom_def)
   440   let ?X = "vars(strip C2)"
   441   let ?X = "vars(strip C2)"
   441   assume top: "top_on_acom (- vars(strip C2)) C1"  "top_on_acom (- vars(strip C2)) C2"
   442   assume top: "top_on_acom (- vars(strip C2)) C1"  "top_on_acom (- vars(strip C2)) C2"
   442   and strip_eq: "strip C1 = strip C2"
   443   and strip_eq: "strip C1 = strip C2"
   443   and 0: "\<forall>i<size(annos C2). annos C1 ! i \<le> annos C2 ! i"
   444   and 0: "\<forall>i<size(annos C2). annos C1 ! i \<le> annos C2 ! i"
   444   hence 1: "\<forall>i<size(annos C2). m_o ?X (annos C1 ! i) \<ge> m_o ?X (annos C2 ! i)"
   445   hence 1: "\<forall>i<size(annos C2). m_o ?X (annos C1 ! i) \<ge> m_o ?X (annos C2 ! i)"
   450   have topo2: "top_on_opt (- ?X) (annos C2 ! i)"
   451   have topo2: "top_on_opt (- ?X) (annos C2 ! i)"
   451     using i(1) top(2) by(simp add: top_on_acom_def size_annos_same[OF strip_eq])
   452     using i(1) top(2) by(simp add: top_on_acom_def size_annos_same[OF strip_eq])
   452   from i have "m_o ?X (annos C1 ! i) > m_o ?X (annos C2 ! i)" (is "?P i")
   453   from i have "m_o ?X (annos C1 ! i) > m_o ?X (annos C2 ! i)" (is "?P i")
   453     by (metis 0 less_option_def m_o2[OF finite_cvars topo1] topo2)
   454     by (metis 0 less_option_def m_o2[OF finite_cvars topo1] topo2)
   454   hence 2: "\<exists>i < size(annos C2). ?P i" using `i < size(annos C2)` by blast
   455   hence 2: "\<exists>i < size(annos C2). ?P i" using `i < size(annos C2)` by blast
   455   show "(\<Sum>i<size(annos C2). m_o ?X (annos C2 ! i))
   456   have "(\<Sum>i<size(annos C2). m_o ?X (annos C2 ! i))
   456          < (\<Sum>i<size(annos C2). m_o ?X (annos C1 ! i))"
   457          < (\<Sum>i<size(annos C2). m_o ?X (annos C1 ! i))"
   457     apply(rule setsum_strict_mono_ex1) using 1 2 by (auto)
   458     apply(rule setsum_strict_mono_ex1) using 1 2 by (auto)
       
   459   thus ?thesis
       
   460     by(simp add: m_c_def vars_acom_def strip_eq listsum_setsum_nth atLeast0LessThan size_annos_same[OF strip_eq])
   458 qed
   461 qed
   459 
   462 
   460 end
   463 end
   461 
   464 
   462 
   465