equal
deleted
inserted
replaced
647 begin |
647 begin |
648 |
648 |
649 definition |
649 definition |
650 "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)" |
650 "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)" |
651 |
651 |
652 lemma inf_apply: |
652 lemma inf_apply (* CANDIDATE [simp, code] *): |
653 "(f \<sqinter> g) x = f x \<sqinter> g x" |
653 "(f \<sqinter> g) x = f x \<sqinter> g x" |
654 by (simp add: inf_fun_def) |
654 by (simp add: inf_fun_def) |
655 |
655 |
656 definition |
656 definition |
657 "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)" |
657 "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)" |
658 |
658 |
659 lemma sup_apply: |
659 lemma sup_apply (* CANDIDATE [simp, code] *): |
660 "(f \<squnion> g) x = f x \<squnion> g x" |
660 "(f \<squnion> g) x = f x \<squnion> g x" |
661 by (simp add: sup_fun_def) |
661 by (simp add: sup_fun_def) |
662 |
662 |
663 instance proof |
663 instance proof |
664 qed (simp_all add: le_fun_def inf_apply sup_apply) |
664 qed (simp_all add: le_fun_def inf_apply sup_apply) |
674 begin |
674 begin |
675 |
675 |
676 definition |
676 definition |
677 fun_Compl_def: "- A = (\<lambda>x. - A x)" |
677 fun_Compl_def: "- A = (\<lambda>x. - A x)" |
678 |
678 |
679 lemma uminus_apply: |
679 lemma uminus_apply (* CANDIDATE [simp, code] *): |
680 "(- A) x = - (A x)" |
680 "(- A) x = - (A x)" |
681 by (simp add: fun_Compl_def) |
681 by (simp add: fun_Compl_def) |
682 |
682 |
683 instance .. |
683 instance .. |
684 |
684 |
688 begin |
688 begin |
689 |
689 |
690 definition |
690 definition |
691 fun_diff_def: "A - B = (\<lambda>x. A x - B x)" |
691 fun_diff_def: "A - B = (\<lambda>x. A x - B x)" |
692 |
692 |
693 lemma minus_apply: |
693 lemma minus_apply (* CANDIDATE [simp, code] *): |
694 "(A - B) x = A x - B x" |
694 "(A - B) x = A x - B x" |
695 by (simp add: fun_diff_def) |
695 by (simp add: fun_diff_def) |
696 |
696 |
697 instance .. |
697 instance .. |
698 |
698 |