src/HOL/Lattices.thy
changeset 46689 f559866a7aa2
parent 46631 2c5c003cee35
child 46691 72d81e789106
equal deleted inserted replaced
46675:f4ce220d2799 46689:f559866a7aa2
   647 begin
   647 begin
   648 
   648 
   649 definition
   649 definition
   650   "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)"
   650   "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)"
   651 
   651 
   652 lemma inf_apply:
   652 lemma inf_apply (* CANDIDATE [simp, code] *):
   653   "(f \<sqinter> g) x = f x \<sqinter> g x"
   653   "(f \<sqinter> g) x = f x \<sqinter> g x"
   654   by (simp add: inf_fun_def)
   654   by (simp add: inf_fun_def)
   655 
   655 
   656 definition
   656 definition
   657   "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)"
   657   "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)"
   658 
   658 
   659 lemma sup_apply:
   659 lemma sup_apply (* CANDIDATE [simp, code] *):
   660   "(f \<squnion> g) x = f x \<squnion> g x"
   660   "(f \<squnion> g) x = f x \<squnion> g x"
   661   by (simp add: sup_fun_def)
   661   by (simp add: sup_fun_def)
   662 
   662 
   663 instance proof
   663 instance proof
   664 qed (simp_all add: le_fun_def inf_apply sup_apply)
   664 qed (simp_all add: le_fun_def inf_apply sup_apply)
   674 begin
   674 begin
   675 
   675 
   676 definition
   676 definition
   677   fun_Compl_def: "- A = (\<lambda>x. - A x)"
   677   fun_Compl_def: "- A = (\<lambda>x. - A x)"
   678 
   678 
   679 lemma uminus_apply:
   679 lemma uminus_apply (* CANDIDATE [simp, code] *):
   680   "(- A) x = - (A x)"
   680   "(- A) x = - (A x)"
   681   by (simp add: fun_Compl_def)
   681   by (simp add: fun_Compl_def)
   682 
   682 
   683 instance ..
   683 instance ..
   684 
   684 
   688 begin
   688 begin
   689 
   689 
   690 definition
   690 definition
   691   fun_diff_def: "A - B = (\<lambda>x. A x - B x)"
   691   fun_diff_def: "A - B = (\<lambda>x. A x - B x)"
   692 
   692 
   693 lemma minus_apply:
   693 lemma minus_apply (* CANDIDATE [simp, code] *):
   694   "(A - B) x = A x - B x"
   694   "(A - B) x = A x - B x"
   695   by (simp add: fun_diff_def)
   695   by (simp add: fun_diff_def)
   696 
   696 
   697 instance ..
   697 instance ..
   698 
   698