src/ZF/Trancl.thy
changeset 13239 f599984ec4c2
parent 13220 62c899c77151
child 13240 bb5f4faea1f3
equal deleted inserted replaced
13238:a6cb18a25cbb 13239:f599984ec4c2
     1 (*  Title:      ZF/trancl.thy
     1 (*  Title:      ZF/trancl.thy
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1992  University of Cambridge
     4     Copyright   1992  University of Cambridge
     5 
     5 
     6 Transitive closure of a relation
     6 1. General Properties of relations
       
     7 2. Transitive closure of a relation
     7 *)
     8 *)
     8 
     9 
     9 Trancl = Fixedpt + Perm + mono + Rel + 
    10 theory Trancl = Fixedpt + Perm + mono:
    10 consts
    11 
    11     rtrancl :: "i=>i"  ("(_^*)" [100] 100)  (*refl/transitive closure*)
    12 constdefs
    12     trancl  :: "i=>i"  ("(_^+)" [100] 100)  (*transitive closure*)
    13   refl     :: "[i,i]=>o"
    13 
    14     "refl(A,r) == (ALL x: A. <x,x> : r)"
    14 defs
    15 
    15     rtrancl_def "r^* == lfp(field(r)*field(r), %s. id(field(r)) Un (r O s))"
    16   irrefl   :: "[i,i]=>o"
    16     trancl_def  "r^+ == r O r^*"
    17     "irrefl(A,r) == ALL x: A. <x,x> ~: r"
       
    18 
       
    19   equiv    :: "[i,i]=>o"
       
    20     "equiv(A,r) == r <= A*A & refl(A,r) & sym(r) & trans(r)"
       
    21 
       
    22   sym      :: "i=>o"
       
    23     "sym(r) == ALL x y. <x,y>: r --> <y,x>: r"
       
    24 
       
    25   asym     :: "i=>o"
       
    26     "asym(r) == ALL x y. <x,y>:r --> ~ <y,x>:r"
       
    27 
       
    28   antisym  :: "i=>o"
       
    29     "antisym(r) == ALL x y.<x,y>:r --> <y,x>:r --> x=y"
       
    30 
       
    31   trans    :: "i=>o"
       
    32     "trans(r) == ALL x y z. <x,y>: r --> <y,z>: r --> <x,z>: r"
       
    33 
       
    34   trans_on :: "[i,i]=>o"  ("trans[_]'(_')")
       
    35     "trans[A](r) == ALL x:A. ALL y:A. ALL z:A.       
       
    36                           <x,y>: r --> <y,z>: r --> <x,z>: r"
       
    37 
       
    38   rtrancl :: "i=>i"  ("(_^*)" [100] 100)  (*refl/transitive closure*)
       
    39     "r^* == lfp(field(r)*field(r), %s. id(field(r)) Un (r O s))"
       
    40 
       
    41   trancl  :: "i=>i"  ("(_^+)" [100] 100)  (*transitive closure*)
       
    42     "r^+ == r O r^*"
       
    43 
       
    44 subsection{*General properties of relations*}
       
    45 
       
    46 subsubsection{*irreflexivity*}
       
    47 
       
    48 lemma irreflI:
       
    49     "[| !!x. x:A ==> <x,x> ~: r |] ==> irrefl(A,r)"
       
    50 by (simp add: irrefl_def); 
       
    51 
       
    52 lemma symI: "[| irrefl(A,r);  x:A |] ==>  <x,x> ~: r"
       
    53 apply (simp add: irrefl_def)
       
    54 done
       
    55 
       
    56 subsubsection{*symmetry*}
       
    57 
       
    58 lemma symI:
       
    59      "[| !!x y.<x,y>: r ==> <y,x>: r |] ==> sym(r)"
       
    60 apply (unfold sym_def); 
       
    61 apply (blast intro: elim:); 
       
    62 done
       
    63 
       
    64 lemma antisymI: "[| sym(r); <x,y>: r |]  ==>  <y,x>: r"
       
    65 apply (unfold sym_def)
       
    66 apply blast
       
    67 done
       
    68 
       
    69 subsubsection{*antisymmetry*}
       
    70 
       
    71 lemma antisymI:
       
    72      "[| !!x y.[| <x,y>: r;  <y,x>: r |] ==> x=y |] ==> antisym(r)"
       
    73 apply (simp add: antisym_def) 
       
    74 apply (blast intro: elim:); 
       
    75 done
       
    76 
       
    77 lemma antisymE: "[| antisym(r); <x,y>: r;  <y,x>: r |]  ==>  x=y"
       
    78 apply (simp add: antisym_def)
       
    79 apply blast
       
    80 done
       
    81 
       
    82 subsubsection{*transitivity*}
       
    83 
       
    84 lemma transD: "[| trans(r);  <a,b>:r;  <b,c>:r |] ==> <a,c>:r"
       
    85 apply (unfold trans_def)
       
    86 apply blast
       
    87 done
       
    88 
       
    89 lemma trans_onD: 
       
    90     "[| trans[A](r);  <a,b>:r;  <b,c>:r;  a:A;  b:A;  c:A |] ==> <a,c>:r"
       
    91 apply (unfold trans_on_def)
       
    92 apply blast
       
    93 done
       
    94 
       
    95 subsection{*Transitive closure of a relation*}
       
    96 
       
    97 lemma rtrancl_bnd_mono:
       
    98      "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))"
       
    99 apply (rule bnd_monoI)
       
   100 apply (blast intro: elim:)+
       
   101 done
       
   102 
       
   103 lemma rtrancl_mono: "r<=s ==> r^* <= s^*"
       
   104 apply (unfold rtrancl_def)
       
   105 apply (rule lfp_mono)
       
   106 apply (rule rtrancl_bnd_mono)+
       
   107 apply (blast intro: elim:); 
       
   108 done
       
   109 
       
   110 (* r^* = id(field(r)) Un ( r O r^* )    *)
       
   111 lemmas rtrancl_unfold =
       
   112      rtrancl_bnd_mono [THEN rtrancl_def [THEN def_lfp_unfold], standard]
       
   113 
       
   114 (** The relation rtrancl **)
       
   115 
       
   116 (*  r^* <= field(r) * field(r)  *)
       
   117 lemmas rtrancl_type = rtrancl_def [THEN def_lfp_subset, standard]
       
   118 
       
   119 (*Reflexivity of rtrancl*)
       
   120 lemma rtrancl_refl: "[| a: field(r) |] ==> <a,a> : r^*"
       
   121 apply (rule rtrancl_unfold [THEN ssubst])
       
   122 apply (erule idI [THEN UnI1])
       
   123 done
       
   124 
       
   125 (*Closure under composition with r  *)
       
   126 lemma rtrancl_into_rtrancl: "[| <a,b> : r^*;  <b,c> : r |] ==> <a,c> : r^*"
       
   127 apply (rule rtrancl_unfold [THEN ssubst])
       
   128 apply (rule compI [THEN UnI2])
       
   129 apply assumption
       
   130 apply assumption
       
   131 done
       
   132 
       
   133 (*rtrancl of r contains all pairs in r  *)
       
   134 lemma r_into_rtrancl: "<a,b> : r ==> <a,b> : r^*"
       
   135 apply (rule rtrancl_refl [THEN rtrancl_into_rtrancl])
       
   136 apply (blast intro: elim:)+
       
   137 done
       
   138 
       
   139 (*The premise ensures that r consists entirely of pairs*)
       
   140 lemma r_subset_rtrancl: "r <= Sigma(A,B) ==> r <= r^*"
       
   141 apply (blast intro: r_into_rtrancl)
       
   142 done
       
   143 
       
   144 lemma rtrancl_field: "field(r^*) = field(r)"
       
   145 apply (blast intro: r_into_rtrancl dest!: rtrancl_type [THEN subsetD])
       
   146 done
       
   147 
       
   148 
       
   149 (** standard induction rule **)
       
   150 
       
   151 lemma rtrancl_full_induct:
       
   152   "[| <a,b> : r^*;  
       
   153       !!x. x: field(r) ==> P(<x,x>);  
       
   154       !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |]  
       
   155    ==>  P(<a,b>)"
       
   156 apply (erule def_induct [OF rtrancl_def rtrancl_bnd_mono])
       
   157 apply (blast intro: elim:); 
       
   158 done
       
   159 
       
   160 (*nice induction rule.
       
   161   Tried adding the typing hypotheses y,z:field(r), but these
       
   162   caused expensive case splits!*)
       
   163 lemma rtrancl_induct:
       
   164   "[| <a,b> : r^*;                                               
       
   165       P(a);                                                      
       
   166       !!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z)        
       
   167    |] ==> P(b)"
       
   168 (*by induction on this formula*)
       
   169 apply (subgoal_tac "ALL y. <a,b> = <a,y> --> P (y) ")
       
   170 (*now solve first subgoal: this formula is sufficient*)
       
   171 apply (erule spec [THEN mp], rule refl)
       
   172 (*now do the induction*)
       
   173 apply (erule rtrancl_full_induct)
       
   174 apply (blast)+
       
   175 done
       
   176 
       
   177 (*transitivity of transitive closure!! -- by induction.*)
       
   178 lemma trans_rtrancl: "trans(r^*)"
       
   179 apply (unfold trans_def)
       
   180 apply (intro allI impI)
       
   181 apply (erule_tac b = "z" in rtrancl_induct)
       
   182 apply assumption; 
       
   183 apply (blast intro: rtrancl_into_rtrancl) 
       
   184 done
       
   185 
       
   186 lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
       
   187 
       
   188 (*elimination of rtrancl -- by induction on a special formula*)
       
   189 lemma rtranclE:
       
   190     "[| <a,b> : r^*;  (a=b) ==> P;                        
       
   191         !!y.[| <a,y> : r^*;   <y,b> : r |] ==> P |]       
       
   192      ==> P"
       
   193 apply (subgoal_tac "a = b | (EX y. <a,y> : r^* & <y,b> : r) ")
       
   194 (*see HOL/trancl*)
       
   195 apply (blast intro: elim:); 
       
   196 apply (erule rtrancl_induct)
       
   197 apply (blast intro: elim:)+
       
   198 done
       
   199 
       
   200 
       
   201 (**** The relation trancl ****)
       
   202 
       
   203 (*Transitivity of r^+ is proved by transitivity of r^*  *)
       
   204 lemma trans_trancl: "trans(r^+)"
       
   205 apply (unfold trans_def trancl_def)
       
   206 apply (blast intro: rtrancl_into_rtrancl
       
   207                     trans_rtrancl [THEN transD, THEN compI])
       
   208 done
       
   209 
       
   210 lemmas trancl_trans = trans_trancl [THEN transD, standard]
       
   211 
       
   212 (** Conversions between trancl and rtrancl **)
       
   213 
       
   214 lemma trancl_into_rtrancl: "<a,b> : r^+ ==> <a,b> : r^*"
       
   215 apply (unfold trancl_def)
       
   216 apply (blast intro: rtrancl_into_rtrancl)
       
   217 done
       
   218 
       
   219 (*r^+ contains all pairs in r  *)
       
   220 lemma r_into_trancl: "<a,b> : r ==> <a,b> : r^+"
       
   221 apply (unfold trancl_def)
       
   222 apply (blast intro!: rtrancl_refl)
       
   223 done
       
   224 
       
   225 (*The premise ensures that r consists entirely of pairs*)
       
   226 lemma r_subset_trancl: "r <= Sigma(A,B) ==> r <= r^+"
       
   227 apply (blast intro: r_into_trancl)
       
   228 done
       
   229 
       
   230 (*intro rule by definition: from r^* and r  *)
       
   231 lemma rtrancl_into_trancl1: "[| <a,b> : r^*;  <b,c> : r |]   ==>  <a,c> : r^+"
       
   232 apply (unfold trancl_def)
       
   233 apply blast
       
   234 done
       
   235 
       
   236 (*intro rule from r and r^*  *)
       
   237 lemma rtrancl_into_trancl2:
       
   238     "[| <a,b> : r;  <b,c> : r^* |]   ==>  <a,c> : r^+"
       
   239 apply (erule rtrancl_induct)
       
   240  apply (erule r_into_trancl)
       
   241 apply (blast intro: r_into_trancl trancl_trans) 
       
   242 done
       
   243 
       
   244 (*Nice induction rule for trancl*)
       
   245 lemma trancl_induct:
       
   246   "[| <a,b> : r^+;                                       
       
   247       !!y.  [| <a,y> : r |] ==> P(y);                    
       
   248       !!y z.[| <a,y> : r^+;  <y,z> : r;  P(y) |] ==> P(z)        
       
   249    |] ==> P(b)"
       
   250 apply (rule compEpair)
       
   251 apply (unfold trancl_def, assumption)
       
   252 (*by induction on this formula*)
       
   253 apply (subgoal_tac "ALL z. <y,z> : r --> P (z) ")
       
   254 (*now solve first subgoal: this formula is sufficient*)
       
   255  apply blast
       
   256 apply (erule rtrancl_induct)
       
   257 apply (blast intro: rtrancl_into_trancl1)+
       
   258 done
       
   259 
       
   260 (*elimination of r^+ -- NOT an induction rule*)
       
   261 lemma tranclE:
       
   262     "[| <a,b> : r^+;   
       
   263         <a,b> : r ==> P;  
       
   264         !!y.[| <a,y> : r^+; <y,b> : r |] ==> P   
       
   265      |] ==> P"
       
   266 apply (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+ & <y,b> : r) ")
       
   267 apply (blast intro: elim:); 
       
   268 apply (rule compEpair)
       
   269 apply (unfold trancl_def, assumption)
       
   270 apply (erule rtranclE)
       
   271 apply (blast intro: rtrancl_into_trancl1)+
       
   272 done
       
   273 
       
   274 lemma trancl_type: "r^+ <= field(r)*field(r)"
       
   275 apply (unfold trancl_def)
       
   276 apply (blast elim: rtrancl_type [THEN subsetD, THEN SigmaE2])
       
   277 done
       
   278 
       
   279 lemma trancl_mono: "r<=s ==> r^+ <= s^+"
       
   280 by (unfold trancl_def, intro comp_mono rtrancl_mono)
       
   281 
       
   282 
       
   283 (** Suggested by Sidi Ould Ehmety **)
       
   284 
       
   285 lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
       
   286 apply (rule equalityI)
       
   287 apply auto
       
   288  prefer 2
       
   289  apply (frule rtrancl_type [THEN subsetD])
       
   290  apply (blast intro: r_into_rtrancl elim:); 
       
   291 txt{*converse direction*}
       
   292 apply (frule rtrancl_type [THEN subsetD])
       
   293 apply (clarify ); 
       
   294 apply (erule rtrancl_induct)
       
   295 apply (simp add: rtrancl_refl rtrancl_field)
       
   296 apply (blast intro: rtrancl_trans)
       
   297 done
       
   298 
       
   299 lemma rtrancl_subset: "[| R <= S; S <= R^* |] ==> S^* = R^*"
       
   300 apply (drule rtrancl_mono)
       
   301 apply (drule rtrancl_mono)
       
   302 apply simp_all
       
   303 apply blast
       
   304 done
       
   305 
       
   306 lemma rtrancl_Un_rtrancl:
       
   307      "[| r<= Sigma(A,B); s<=Sigma(C,D) |] ==> (r^* Un s^*)^* = (r Un s)^*"
       
   308 apply (rule rtrancl_subset)
       
   309 apply (blast dest: r_subset_rtrancl)
       
   310 apply (blast intro: rtrancl_mono [THEN subsetD])
       
   311 done
       
   312 
       
   313 (*** "converse" laws by Sidi Ould Ehmety ***)
       
   314 
       
   315 (** rtrancl **)
       
   316 
       
   317 lemma rtrancl_converseD: "<x,y>:converse(r)^* ==> <x,y>:converse(r^*)"
       
   318 apply (rule converseI)
       
   319 apply (frule rtrancl_type [THEN subsetD])
       
   320 apply (erule rtrancl_induct)
       
   321 apply (blast intro: rtrancl_refl)
       
   322 apply (blast intro: r_into_rtrancl rtrancl_trans)
       
   323 done
       
   324 
       
   325 lemma rtrancl_converseI: "<x,y>:converse(r^*) ==> <x,y>:converse(r)^*"
       
   326 apply (drule converseD)
       
   327 apply (frule rtrancl_type [THEN subsetD])
       
   328 apply (erule rtrancl_induct)
       
   329 apply (blast intro: rtrancl_refl)
       
   330 apply (blast intro: r_into_rtrancl rtrancl_trans)
       
   331 done
       
   332 
       
   333 lemma rtrancl_converse: "converse(r)^* = converse(r^*)"
       
   334 apply (safe intro!: equalityI)
       
   335 apply (frule rtrancl_type [THEN subsetD])
       
   336 apply (safe dest!: rtrancl_converseD intro!: rtrancl_converseI)
       
   337 done
       
   338 
       
   339 (** trancl **)
       
   340 
       
   341 lemma trancl_converseD: "<a, b>:converse(r)^+ ==> <a, b>:converse(r^+)"
       
   342 apply (erule trancl_induct)
       
   343 apply (auto intro: r_into_trancl trancl_trans)
       
   344 done
       
   345 
       
   346 lemma trancl_converseI: "<x,y>:converse(r^+) ==> <x,y>:converse(r)^+"
       
   347 apply (drule converseD)
       
   348 apply (erule trancl_induct)
       
   349 apply (auto intro: r_into_trancl trancl_trans)
       
   350 done
       
   351 
       
   352 lemma trancl_converse: "converse(r)^+ = converse(r^+)"
       
   353 apply (safe intro!: equalityI)
       
   354 apply (frule trancl_type [THEN subsetD])
       
   355 apply (safe dest!: trancl_converseD intro!: trancl_converseI)
       
   356 done
       
   357 
       
   358 lemma converse_trancl_induct:
       
   359 "[| <a, b>:r^+; !!y. <y, b> :r ==> P(y);  
       
   360       !!y z. [| <y, z> : r; <z, b> : r^+; P(z) |] ==> P(y) |]  
       
   361        ==> P(a)"
       
   362 apply (drule converseI)
       
   363 apply (simp (no_asm_use) add: trancl_converse [symmetric])
       
   364 apply (erule trancl_induct)
       
   365 apply (auto simp add: trancl_converse)
       
   366 done
       
   367 
       
   368 ML
       
   369 {*
       
   370 val refl_def = thm "refl_def";
       
   371 val irrefl_def = thm "irrefl_def";
       
   372 val equiv_def = thm "equiv_def";
       
   373 val sym_def = thm "sym_def";
       
   374 val asym_def = thm "asym_def";
       
   375 val antisym_def = thm "antisym_def";
       
   376 val trans_def = thm "trans_def";
       
   377 val trans_on_def = thm "trans_on_def";
       
   378 
       
   379 val irreflI = thm "irreflI";
       
   380 val symI = thm "symI";
       
   381 val symI = thm "symI";
       
   382 val antisymI = thm "antisymI";
       
   383 val antisymE = thm "antisymE";
       
   384 val transD = thm "transD";
       
   385 val trans_onD = thm "trans_onD";
       
   386 
       
   387 val rtrancl_bnd_mono = thm "rtrancl_bnd_mono";
       
   388 val rtrancl_mono = thm "rtrancl_mono";
       
   389 val rtrancl_unfold = thm "rtrancl_unfold";
       
   390 val rtrancl_type = thm "rtrancl_type";
       
   391 val rtrancl_refl = thm "rtrancl_refl";
       
   392 val rtrancl_into_rtrancl = thm "rtrancl_into_rtrancl";
       
   393 val r_into_rtrancl = thm "r_into_rtrancl";
       
   394 val r_subset_rtrancl = thm "r_subset_rtrancl";
       
   395 val rtrancl_field = thm "rtrancl_field";
       
   396 val rtrancl_full_induct = thm "rtrancl_full_induct";
       
   397 val rtrancl_induct = thm "rtrancl_induct";
       
   398 val trans_rtrancl = thm "trans_rtrancl";
       
   399 val rtrancl_trans = thm "rtrancl_trans";
       
   400 val rtranclE = thm "rtranclE";
       
   401 val trans_trancl = thm "trans_trancl";
       
   402 val trancl_trans = thm "trancl_trans";
       
   403 val trancl_into_rtrancl = thm "trancl_into_rtrancl";
       
   404 val r_into_trancl = thm "r_into_trancl";
       
   405 val r_subset_trancl = thm "r_subset_trancl";
       
   406 val rtrancl_into_trancl1 = thm "rtrancl_into_trancl1";
       
   407 val rtrancl_into_trancl2 = thm "rtrancl_into_trancl2";
       
   408 val trancl_induct = thm "trancl_induct";
       
   409 val tranclE = thm "tranclE";
       
   410 val trancl_type = thm "trancl_type";
       
   411 val trancl_mono = thm "trancl_mono";
       
   412 val rtrancl_idemp = thm "rtrancl_idemp";
       
   413 val rtrancl_subset = thm "rtrancl_subset";
       
   414 val rtrancl_Un_rtrancl = thm "rtrancl_Un_rtrancl";
       
   415 val rtrancl_converseD = thm "rtrancl_converseD";
       
   416 val rtrancl_converseI = thm "rtrancl_converseI";
       
   417 val rtrancl_converse = thm "rtrancl_converse";
       
   418 val trancl_converseD = thm "trancl_converseD";
       
   419 val trancl_converseI = thm "trancl_converseI";
       
   420 val trancl_converse = thm "trancl_converse";
       
   421 val converse_trancl_induct = thm "converse_trancl_induct";
       
   422 *}
       
   423 
    17 end
   424 end