equal
deleted
inserted
replaced
411 goal thy "(UN x:A. {}) = {}"; |
411 goal thy "(UN x:A. {}) = {}"; |
412 by (Blast_tac 1); |
412 by (Blast_tac 1); |
413 qed "UN_empty2"; |
413 qed "UN_empty2"; |
414 Addsimps[UN_empty2]; |
414 Addsimps[UN_empty2]; |
415 |
415 |
|
416 goal thy "(UN x:A. {x}) = A"; |
|
417 by (Blast_tac 1); |
|
418 qed "UN_singleton"; |
|
419 Addsimps [UN_singleton]; |
|
420 |
416 goal thy "!!k. k:I ==> A k Un (UN i:I. A i) = (UN i:I. A i)"; |
421 goal thy "!!k. k:I ==> A k Un (UN i:I. A i) = (UN i:I. A i)"; |
417 by (Blast_tac 1); |
422 by (Blast_tac 1); |
418 qed "UN_absorb"; |
423 qed "UN_absorb"; |
419 |
424 |
420 goal thy "(INT x:{}. B x) = UNIV"; |
425 goal thy "(INT x:{}. B x) = UNIV"; |
607 |
612 |
608 goal thy "!!A. [| A<=B; B<= C |] ==> (B - (C - A)) = (A :: 'a set)"; |
613 goal thy "!!A. [| A<=B; B<= C |] ==> (B - (C - A)) = (A :: 'a set)"; |
609 by (Blast_tac 1); |
614 by (Blast_tac 1); |
610 qed "double_diff"; |
615 qed "double_diff"; |
611 |
616 |
|
617 goal thy "A Un (B-A) = A Un B"; |
|
618 by (Blast_tac 1); |
|
619 qed "Un_Diff_cancel"; |
|
620 |
|
621 goal thy "(B-A) Un A = B Un A"; |
|
622 by (Blast_tac 1); |
|
623 qed "Un_Diff_cancel2"; |
|
624 |
|
625 Addsimps [Un_Diff_cancel, Un_Diff_cancel2]; |
|
626 |
612 goal thy "A - (B Un C) = (A-B) Int (A-C)"; |
627 goal thy "A - (B Un C) = (A-B) Int (A-C)"; |
613 by (Blast_tac 1); |
628 by (Blast_tac 1); |
614 qed "Diff_Un"; |
629 qed "Diff_Un"; |
615 |
630 |
616 goal thy "A - (B Int C) = (A-B) Un (A-C)"; |
631 goal thy "A - (B Int C) = (A-B) Un (A-C)"; |
622 qed "Un_Diff"; |
637 qed "Un_Diff"; |
623 |
638 |
624 goal thy "(A Int B) - C = (A - C) Int (B - C)"; |
639 goal thy "(A Int B) - C = (A - C) Int (B - C)"; |
625 by (Blast_tac 1); |
640 by (Blast_tac 1); |
626 qed "Int_Diff"; |
641 qed "Int_Diff"; |
|
642 |
|
643 goal thy "(A-B) Int C = (A Int C) - (B Int C)"; |
|
644 by (Blast_tac 1); |
|
645 qed "Diff_Int_distrib"; |
627 |
646 |
628 |
647 |
629 section "Miscellany"; |
648 section "Miscellany"; |
630 |
649 |
631 goal thy "(A = B) = ((A <= (B::'a set)) & (B<=A))"; |
650 goal thy "(A = B) = ((A <= (B::'a set)) & (B<=A))"; |