src/CTT/Arith.thy
changeset 65447 fae6051ec192
parent 65446 ed18feb34c07
child 65448 9bc3b57c1fa7
equal deleted inserted replaced
65446:ed18feb34c07 65447:fae6051ec192
     1 (*  Title:      CTT/Arith.thy
       
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     3     Copyright   1991  University of Cambridge
       
     4 *)
       
     5 
       
     6 section \<open>Elementary arithmetic\<close>
       
     7 
       
     8 theory Arith
       
     9   imports Bool
       
    10 begin
       
    11 
       
    12 subsection \<open>Arithmetic operators and their definitions\<close>
       
    13 
       
    14 definition add :: "[i,i]\<Rightarrow>i"   (infixr "#+" 65)
       
    15   where "a#+b \<equiv> rec(a, b, \<lambda>u v. succ(v))"
       
    16 
       
    17 definition diff :: "[i,i]\<Rightarrow>i"   (infixr "-" 65)
       
    18   where "a-b \<equiv> rec(b, a, \<lambda>u v. rec(v, 0, \<lambda>x y. x))"
       
    19 
       
    20 definition absdiff :: "[i,i]\<Rightarrow>i"   (infixr "|-|" 65)
       
    21   where "a|-|b \<equiv> (a-b) #+ (b-a)"
       
    22 
       
    23 definition mult :: "[i,i]\<Rightarrow>i"   (infixr "#*" 70)
       
    24   where "a#*b \<equiv> rec(a, 0, \<lambda>u v. b #+ v)"
       
    25 
       
    26 definition mod :: "[i,i]\<Rightarrow>i"   (infixr "mod" 70)
       
    27   where "a mod b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(v) |-| b, 0, \<lambda>x y. succ(v)))"
       
    28 
       
    29 definition div :: "[i,i]\<Rightarrow>i"   (infixr "div" 70)
       
    30   where "a div b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(u) mod b, succ(v), \<lambda>x y. v))"
       
    31 
       
    32 lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def
       
    33 
       
    34 
       
    35 subsection \<open>Proofs about elementary arithmetic: addition, multiplication, etc.\<close>
       
    36 
       
    37 subsubsection \<open>Addition\<close>
       
    38 
       
    39 text \<open>Typing of \<open>add\<close>: short and long versions.\<close>
       
    40 
       
    41 lemma add_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b : N"
       
    42   unfolding arith_defs by typechk
       
    43 
       
    44 lemma add_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #+ b = c #+ d : N"
       
    45   unfolding arith_defs by equal
       
    46 
       
    47 
       
    48 text \<open>Computation for \<open>add\<close>: 0 and successor cases.\<close>
       
    49 
       
    50 lemma addC0: "b:N \<Longrightarrow> 0 #+ b = b : N"
       
    51   unfolding arith_defs by rew
       
    52 
       
    53 lemma addC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #+ b = succ(a #+ b) : N"
       
    54   unfolding arith_defs by rew
       
    55 
       
    56 
       
    57 subsubsection \<open>Multiplication\<close>
       
    58 
       
    59 text \<open>Typing of \<open>mult\<close>: short and long versions.\<close>
       
    60 
       
    61 lemma mult_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b : N"
       
    62   unfolding arith_defs by (typechk add_typing)
       
    63 
       
    64 lemma mult_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #* b = c #* d : N"
       
    65   unfolding arith_defs by (equal add_typingL)
       
    66 
       
    67 
       
    68 text \<open>Computation for \<open>mult\<close>: 0 and successor cases.\<close>
       
    69 
       
    70 lemma multC0: "b:N \<Longrightarrow> 0 #* b = 0 : N"
       
    71   unfolding arith_defs by rew
       
    72 
       
    73 lemma multC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #* b = b #+ (a #* b) : N"
       
    74   unfolding arith_defs by rew
       
    75 
       
    76 
       
    77 subsubsection \<open>Difference\<close>
       
    78 
       
    79 text \<open>Typing of difference.\<close>
       
    80 
       
    81 lemma diff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a - b : N"
       
    82   unfolding arith_defs by typechk
       
    83 
       
    84 lemma diff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a - b = c - d : N"
       
    85   unfolding arith_defs by equal
       
    86 
       
    87 
       
    88 text \<open>Computation for difference: 0 and successor cases.\<close>
       
    89 
       
    90 lemma diffC0: "a:N \<Longrightarrow> a - 0 = a : N"
       
    91   unfolding arith_defs by rew
       
    92 
       
    93 text \<open>Note: \<open>rec(a, 0, \<lambda>z w.z)\<close> is \<open>pred(a).\<close>\<close>
       
    94 
       
    95 lemma diff_0_eq_0: "b:N \<Longrightarrow> 0 - b = 0 : N"
       
    96   unfolding arith_defs
       
    97   apply (NE b)
       
    98     apply hyp_rew
       
    99   done
       
   100 
       
   101 text \<open>
       
   102   Essential to simplify FIRST!!  (Else we get a critical pair)
       
   103   \<open>succ(a) - succ(b)\<close> rewrites to \<open>pred(succ(a) - b)\<close>.
       
   104 \<close>
       
   105 lemma diff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) - succ(b) = a - b : N"
       
   106   unfolding arith_defs
       
   107   apply hyp_rew
       
   108   apply (NE b)
       
   109     apply hyp_rew
       
   110   done
       
   111 
       
   112 
       
   113 subsection \<open>Simplification\<close>
       
   114 
       
   115 lemmas arith_typing_rls = add_typing mult_typing diff_typing
       
   116   and arith_congr_rls = add_typingL mult_typingL diff_typingL
       
   117 
       
   118 lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls
       
   119 
       
   120 lemmas arithC_rls =
       
   121   addC0 addC_succ
       
   122   multC0 multC_succ
       
   123   diffC0 diff_0_eq_0 diff_succ_succ
       
   124 
       
   125 ML \<open>
       
   126   structure Arith_simp = TSimpFun(
       
   127     val refl = @{thm refl_elem}
       
   128     val sym = @{thm sym_elem}
       
   129     val trans = @{thm trans_elem}
       
   130     val refl_red = @{thm refl_red}
       
   131     val trans_red = @{thm trans_red}
       
   132     val red_if_equal = @{thm red_if_equal}
       
   133     val default_rls = @{thms arithC_rls comp_rls}
       
   134     val routine_tac = routine_tac @{thms arith_typing_rls routine_rls}
       
   135   )
       
   136 
       
   137   fun arith_rew_tac ctxt prems =
       
   138     make_rew_tac ctxt (Arith_simp.norm_tac ctxt (@{thms congr_rls}, prems))
       
   139 
       
   140   fun hyp_arith_rew_tac ctxt prems =
       
   141     make_rew_tac ctxt
       
   142       (Arith_simp.cond_norm_tac ctxt (prove_cond_tac ctxt, @{thms congr_rls}, prems))
       
   143 \<close>
       
   144 
       
   145 method_setup arith_rew = \<open>
       
   146   Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (arith_rew_tac ctxt ths))
       
   147 \<close>
       
   148 
       
   149 method_setup hyp_arith_rew = \<open>
       
   150   Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_arith_rew_tac ctxt ths))
       
   151 \<close>
       
   152 
       
   153 
       
   154 subsection \<open>Addition\<close>
       
   155 
       
   156 text \<open>Associative law for addition.\<close>
       
   157 lemma add_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #+ c = a #+ (b #+ c) : N"
       
   158   apply (NE a)
       
   159     apply hyp_arith_rew
       
   160   done
       
   161 
       
   162 text \<open>Commutative law for addition.  Can be proved using three inductions.
       
   163   Must simplify after first induction!  Orientation of rewrites is delicate.\<close>
       
   164 lemma add_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b = b #+ a : N"
       
   165   apply (NE a)
       
   166     apply hyp_arith_rew
       
   167    apply (rule sym_elem)
       
   168    prefer 2
       
   169    apply (NE b)
       
   170      prefer 4
       
   171      apply (NE b)
       
   172        apply hyp_arith_rew
       
   173   done
       
   174 
       
   175 
       
   176 subsection \<open>Multiplication\<close>
       
   177 
       
   178 text \<open>Right annihilation in product.\<close>
       
   179 lemma mult_0_right: "a:N \<Longrightarrow> a #* 0 = 0 : N"
       
   180   apply (NE a)
       
   181     apply hyp_arith_rew
       
   182   done
       
   183 
       
   184 text \<open>Right successor law for multiplication.\<close>
       
   185 lemma mult_succ_right: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* succ(b) = a #+ (a #* b) : N"
       
   186   apply (NE a)
       
   187     apply (hyp_arith_rew add_assoc [THEN sym_elem])
       
   188   apply (assumption | rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+
       
   189   done
       
   190 
       
   191 text \<open>Commutative law for multiplication.\<close>
       
   192 lemma mult_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b = b #* a : N"
       
   193   apply (NE a)
       
   194     apply (hyp_arith_rew mult_0_right mult_succ_right)
       
   195   done
       
   196 
       
   197 text \<open>Addition distributes over multiplication.\<close>
       
   198 lemma add_mult_distrib: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #* c = (a #* c) #+ (b #* c) : N"
       
   199   apply (NE a)
       
   200     apply (hyp_arith_rew add_assoc [THEN sym_elem])
       
   201   done
       
   202 
       
   203 text \<open>Associative law for multiplication.\<close>
       
   204 lemma mult_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #* b) #* c = a #* (b #* c) : N"
       
   205   apply (NE a)
       
   206     apply (hyp_arith_rew add_mult_distrib)
       
   207   done
       
   208 
       
   209 
       
   210 subsection \<open>Difference\<close>
       
   211 
       
   212 text \<open>
       
   213   Difference on natural numbers, without negative numbers
       
   214   \<^item> \<open>a - b = 0\<close>  iff  \<open>a \<le> b\<close>
       
   215   \<^item> \<open>a - b = succ(c)\<close> iff \<open>a > b\<close>
       
   216 \<close>
       
   217 
       
   218 lemma diff_self_eq_0: "a:N \<Longrightarrow> a - a = 0 : N"
       
   219   apply (NE a)
       
   220     apply hyp_arith_rew
       
   221   done
       
   222 
       
   223 
       
   224 lemma add_0_right: "\<lbrakk>c : N; 0 : N; c : N\<rbrakk> \<Longrightarrow> c #+ 0 = c : N"
       
   225   by (rule addC0 [THEN [3] add_commute [THEN trans_elem]])
       
   226 
       
   227 text \<open>
       
   228   Addition is the inverse of subtraction: if \<open>b \<le> x\<close> then \<open>b #+ (x - b) = x\<close>.
       
   229   An example of induction over a quantified formula (a product).
       
   230   Uses rewriting with a quantified, implicative inductive hypothesis.
       
   231 \<close>
       
   232 schematic_goal add_diff_inverse_lemma:
       
   233   "b:N \<Longrightarrow> ?a : \<Prod>x:N. Eq(N, b-x, 0) \<longrightarrow> Eq(N, b #+ (x-b), x)"
       
   234   apply (NE b)
       
   235     \<comment> \<open>strip one "universal quantifier" but not the "implication"\<close>
       
   236     apply (rule_tac [3] intr_rls)
       
   237     \<comment> \<open>case analysis on \<open>x\<close> in \<open>succ(u) \<le> x \<longrightarrow> succ(u) #+ (x - succ(u)) = x\<close>\<close>
       
   238      prefer 4
       
   239      apply (NE x)
       
   240        apply assumption
       
   241     \<comment> \<open>Prepare for simplification of types -- the antecedent \<open>succ(u) \<le> x\<close>\<close>
       
   242       apply (rule_tac [2] replace_type)
       
   243        apply (rule_tac [1] replace_type)
       
   244         apply arith_rew
       
   245     \<comment> \<open>Solves first 0 goal, simplifies others.  Two sugbgoals remain.
       
   246     Both follow by rewriting, (2) using quantified induction hyp.\<close>
       
   247    apply intr \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close>
       
   248     apply (hyp_arith_rew add_0_right)
       
   249   apply assumption
       
   250   done
       
   251 
       
   252 text \<open>
       
   253   Version of above with premise \<open>b - a = 0\<close> i.e. \<open>a \<ge> b\<close>.
       
   254   Using @{thm ProdE} does not work -- for \<open>?B(?a)\<close> is ambiguous.
       
   255   Instead, @{thm add_diff_inverse_lemma} states the desired induction scheme;
       
   256   the use of \<open>THEN\<close> below instantiates Vars in @{thm ProdE} automatically.
       
   257 \<close>
       
   258 lemma add_diff_inverse: "\<lbrakk>a:N; b:N; b - a = 0 : N\<rbrakk> \<Longrightarrow> b #+ (a-b) = a : N"
       
   259   apply (rule EqE)
       
   260   apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE])
       
   261     apply (assumption | rule EqI)+
       
   262   done
       
   263 
       
   264 
       
   265 subsection \<open>Absolute difference\<close>
       
   266 
       
   267 text \<open>Typing of absolute difference: short and long versions.\<close>
       
   268 
       
   269 lemma absdiff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b : N"
       
   270   unfolding arith_defs by typechk
       
   271 
       
   272 lemma absdiff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a |-| b = c |-| d : N"
       
   273   unfolding arith_defs by equal
       
   274 
       
   275 lemma absdiff_self_eq_0: "a:N \<Longrightarrow> a |-| a = 0 : N"
       
   276   unfolding absdiff_def by (arith_rew diff_self_eq_0)
       
   277 
       
   278 lemma absdiffC0: "a:N \<Longrightarrow> 0 |-| a = a : N"
       
   279   unfolding absdiff_def by hyp_arith_rew
       
   280 
       
   281 lemma absdiff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) |-| succ(b)  =  a |-| b : N"
       
   282   unfolding absdiff_def by hyp_arith_rew
       
   283 
       
   284 text \<open>Note how easy using commutative laws can be?  ...not always...\<close>
       
   285 lemma absdiff_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b = b |-| a : N"
       
   286   unfolding absdiff_def
       
   287   apply (rule add_commute)
       
   288    apply (typechk diff_typing)
       
   289   done
       
   290 
       
   291 text \<open>If \<open>a + b = 0\<close> then \<open>a = 0\<close>. Surprisingly tedious.\<close>
       
   292 schematic_goal add_eq0_lemma: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> ?c : Eq(N,a#+b,0) \<longrightarrow> Eq(N,a,0)"
       
   293   apply (NE a)
       
   294     apply (rule_tac [3] replace_type)
       
   295      apply arith_rew
       
   296   apply intr  \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close>
       
   297    apply (rule_tac [2] zero_ne_succ [THEN FE])
       
   298      apply (erule_tac [3] EqE [THEN sym_elem])
       
   299     apply (typechk add_typing)
       
   300   done
       
   301 
       
   302 text \<open>
       
   303   Version of above with the premise \<open>a + b = 0\<close>.
       
   304   Again, resolution instantiates variables in @{thm ProdE}.
       
   305 \<close>
       
   306 lemma add_eq0: "\<lbrakk>a:N; b:N; a #+ b = 0 : N\<rbrakk> \<Longrightarrow> a = 0 : N"
       
   307   apply (rule EqE)
       
   308   apply (rule add_eq0_lemma [THEN ProdE])
       
   309     apply (rule_tac [3] EqI)
       
   310     apply typechk
       
   311   done
       
   312 
       
   313 text \<open>Here is a lemma to infer \<open>a - b = 0\<close> and \<open>b - a = 0\<close> from \<open>a |-| b = 0\<close>, below.\<close>
       
   314 schematic_goal absdiff_eq0_lem:
       
   315   "\<lbrakk>a:N; b:N; a |-| b = 0 : N\<rbrakk> \<Longrightarrow> ?a : Eq(N, a-b, 0) \<times> Eq(N, b-a, 0)"
       
   316   apply (unfold absdiff_def)
       
   317   apply intr
       
   318    apply eqintr
       
   319    apply (rule_tac [2] add_eq0)
       
   320      apply (rule add_eq0)
       
   321        apply (rule_tac [6] add_commute [THEN trans_elem])
       
   322          apply (typechk diff_typing)
       
   323   done
       
   324 
       
   325 text \<open>If \<open>a |-| b = 0\<close> then \<open>a = b\<close>
       
   326   proof: \<open>a - b = 0\<close> and \<open>b - a = 0\<close>, so \<open>b = a + (b - a) = a + 0 = a\<close>.
       
   327 \<close>
       
   328 lemma absdiff_eq0: "\<lbrakk>a |-| b = 0 : N; a:N; b:N\<rbrakk> \<Longrightarrow> a = b : N"
       
   329   apply (rule EqE)
       
   330   apply (rule absdiff_eq0_lem [THEN SumE])
       
   331      apply eqintr
       
   332   apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem])
       
   333      apply (erule_tac [3] EqE)
       
   334     apply (hyp_arith_rew add_0_right)
       
   335   done
       
   336 
       
   337 
       
   338 subsection \<open>Remainder and Quotient\<close>
       
   339 
       
   340 text \<open>Typing of remainder: short and long versions.\<close>
       
   341 
       
   342 lemma mod_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b : N"
       
   343   unfolding mod_def by (typechk absdiff_typing)
       
   344 
       
   345 lemma mod_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a mod b = c mod d : N"
       
   346   unfolding mod_def by (equal absdiff_typingL)
       
   347 
       
   348 
       
   349 text \<open>Computation for \<open>mod\<close>: 0 and successor cases.\<close>
       
   350 
       
   351 lemma modC0: "b:N \<Longrightarrow> 0 mod b = 0 : N"
       
   352   unfolding mod_def by (rew absdiff_typing)
       
   353 
       
   354 lemma modC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow>
       
   355   succ(a) mod b = rec(succ(a mod b) |-| b, 0, \<lambda>x y. succ(a mod b)) : N"
       
   356   unfolding mod_def by (rew absdiff_typing)
       
   357 
       
   358 
       
   359 text \<open>Typing of quotient: short and long versions.\<close>
       
   360 
       
   361 lemma div_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a div b : N"
       
   362   unfolding div_def by (typechk absdiff_typing mod_typing)
       
   363 
       
   364 lemma div_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a div b = c div d : N"
       
   365   unfolding div_def by (equal absdiff_typingL mod_typingL)
       
   366 
       
   367 lemmas div_typing_rls = mod_typing div_typing absdiff_typing
       
   368 
       
   369 
       
   370 text \<open>Computation for quotient: 0 and successor cases.\<close>
       
   371 
       
   372 lemma divC0: "b:N \<Longrightarrow> 0 div b = 0 : N"
       
   373   unfolding div_def by (rew mod_typing absdiff_typing)
       
   374 
       
   375 lemma divC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow>
       
   376   succ(a) div b = rec(succ(a) mod b, succ(a div b), \<lambda>x y. a div b) : N"
       
   377   unfolding div_def by (rew mod_typing)
       
   378 
       
   379 
       
   380 text \<open>Version of above with same condition as the \<open>mod\<close> one.\<close>
       
   381 lemma divC_succ2: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow>
       
   382   succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), \<lambda>x y. a div b) : N"
       
   383   apply (rule divC_succ [THEN trans_elem])
       
   384     apply (rew div_typing_rls modC_succ)
       
   385   apply (NE "succ (a mod b) |-|b")
       
   386     apply (rew mod_typing div_typing absdiff_typing)
       
   387   done
       
   388 
       
   389 text \<open>For case analysis on whether a number is 0 or a successor.\<close>
       
   390 lemma iszero_decidable: "a:N \<Longrightarrow> rec(a, inl(eq), \<lambda>ka kb. inr(<ka, eq>)) :
       
   391   Eq(N,a,0) + (\<Sum>x:N. Eq(N,a, succ(x)))"
       
   392   apply (NE a)
       
   393     apply (rule_tac [3] PlusI_inr)
       
   394      apply (rule_tac [2] PlusI_inl)
       
   395       apply eqintr
       
   396      apply equal
       
   397   done
       
   398 
       
   399 text \<open>Main Result. Holds when \<open>b\<close> is 0 since \<open>a mod 0 = a\<close> and \<open>a div 0 = 0\<close>.\<close>
       
   400 lemma mod_div_equality: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b #+ (a div b) #* b = a : N"
       
   401   apply (NE a)
       
   402     apply (arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2)
       
   403   apply (rule EqE)
       
   404     \<comment> \<open>case analysis on \<open>succ(u mod b) |-| b\<close>\<close>
       
   405   apply (rule_tac a1 = "succ (u mod b) |-| b" in iszero_decidable [THEN PlusE])
       
   406     apply (erule_tac [3] SumE)
       
   407     apply (hyp_arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2)
       
   408     \<comment> \<open>Replace one occurrence of \<open>b\<close> by \<open>succ(u mod b)\<close>. Clumsy!\<close>
       
   409   apply (rule add_typingL [THEN trans_elem])
       
   410     apply (erule EqE [THEN absdiff_eq0, THEN sym_elem])
       
   411      apply (rule_tac [3] refl_elem)
       
   412      apply (hyp_arith_rew div_typing_rls)
       
   413   done
       
   414 
       
   415 end