src/HOL/Probability/Independent_Family.thy
changeset 61808 fc1556774cfe
parent 61359 e985b52c3eb3
child 62343 24106dc44def
equal deleted inserted replaced
61807:965769fe2b63 61808:fc1556774cfe
     1 (*  Title:      HOL/Probability/Independent_Family.thy
     1 (*  Title:      HOL/Probability/Independent_Family.thy
     2     Author:     Johannes Hölzl, TU München
     2     Author:     Johannes Hölzl, TU München
     3     Author:     Sudeep Kanav, TU München
     3     Author:     Sudeep Kanav, TU München
     4 *)
     4 *)
     5 
     5 
     6 section {* Independent families of events, event sets, and random variables *}
     6 section \<open>Independent families of events, event sets, and random variables\<close>
     7 
     7 
     8 theory Independent_Family
     8 theory Independent_Family
     9   imports Probability_Measure Infinite_Product_Measure
     9   imports Probability_Measure Infinite_Product_Measure
    10 begin
    10 begin
    11 
    11 
    99   unfolding indep_set_def
    99   unfolding indep_set_def
   100 proof (rule indep_setsI)
   100 proof (rule indep_setsI)
   101   fix F J assume "J \<noteq> {}" "J \<subseteq> UNIV"
   101   fix F J assume "J \<noteq> {}" "J \<subseteq> UNIV"
   102     and F: "\<forall>j\<in>J. F j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
   102     and F: "\<forall>j\<in>J. F j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
   103   have "J \<in> Pow UNIV" by auto
   103   have "J \<in> Pow UNIV" by auto
   104   with F `J \<noteq> {}` indep[of "F True" "F False"]
   104   with F \<open>J \<noteq> {}\<close> indep[of "F True" "F False"]
   105   show "prob (\<Inter>j\<in>J. F j) = (\<Prod>j\<in>J. prob (F j))"
   105   show "prob (\<Inter>j\<in>J. F j) = (\<Prod>j\<in>J. prob (F j))"
   106     unfolding UNIV_bool Pow_insert by (auto simp: ac_simps)
   106     unfolding UNIV_bool Pow_insert by (auto simp: ac_simps)
   107 qed (auto split: bool.split simp: ev)
   107 qed (auto split: bool.split simp: ev)
   108 
   108 
   109 lemma (in prob_space) indep_setD:
   109 lemma (in prob_space) indep_setD:
   153             proof cases
   153             proof cases
   154               assume "J = {j}" then show ?thesis by simp
   154               assume "J = {j}" then show ?thesis by simp
   155             next
   155             next
   156               assume "J \<noteq> {j}"
   156               assume "J \<noteq> {j}"
   157               have "prob (\<Inter>i\<in>J. A i) = prob ((\<Inter>i\<in>J-{j}. A i) \<inter> X)"
   157               have "prob (\<Inter>i\<in>J. A i) = prob ((\<Inter>i\<in>J-{j}. A i) \<inter> X)"
   158                 using `j \<in> J` `A j = X` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   158                 using \<open>j \<in> J\<close> \<open>A j = X\<close> by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   159               also have "\<dots> = prob X * (\<Prod>i\<in>J-{j}. prob (A i))"
   159               also have "\<dots> = prob X * (\<Prod>i\<in>J-{j}. prob (A i))"
   160               proof (rule indep)
   160               proof (rule indep)
   161                 show "J - {j} \<noteq> {}" "J - {j} \<subseteq> K" "finite (J - {j})" "j \<notin> J - {j}"
   161                 show "J - {j} \<noteq> {}" "J - {j} \<subseteq> K" "finite (J - {j})" "j \<notin> J - {j}"
   162                   using J `J \<noteq> {j}` `j \<in> J` by auto
   162                   using J \<open>J \<noteq> {j}\<close> \<open>j \<in> J\<close> by auto
   163                 show "\<forall>i\<in>J - {j}. A i \<in> G i"
   163                 show "\<forall>i\<in>J - {j}. A i \<in> G i"
   164                   using J by auto
   164                   using J by auto
   165               qed
   165               qed
   166               also have "\<dots> = prob (A j) * (\<Prod>i\<in>J-{j}. prob (A i))"
   166               also have "\<dots> = prob (A j) * (\<Prod>i\<in>J-{j}. prob (A i))"
   167                 using `A j = X` by simp
   167                 using \<open>A j = X\<close> by simp
   168               also have "\<dots> = (\<Prod>i\<in>J. prob (A i))"
   168               also have "\<dots> = (\<Prod>i\<in>J. prob (A i))"
   169                 unfolding setprod.insert_remove[OF `finite J`, symmetric, of "\<lambda>i. prob  (A i)"]
   169                 unfolding setprod.insert_remove[OF \<open>finite J\<close>, symmetric, of "\<lambda>i. prob  (A i)"]
   170                 using `j \<in> J` by (simp add: insert_absorb)
   170                 using \<open>j \<in> J\<close> by (simp add: insert_absorb)
   171               finally show ?thesis .
   171               finally show ?thesis .
   172             qed
   172             qed
   173           next
   173           next
   174             assume "j \<notin> J"
   174             assume "j \<notin> J"
   175             with J have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
   175             with J have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
   189           fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
   189           fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
   190           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
   190           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
   191             using G by auto
   191             using G by auto
   192           have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   192           have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   193               prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
   193               prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
   194             using A_sets sets.sets_into_space[of _ M] X `J \<noteq> {}`
   194             using A_sets sets.sets_into_space[of _ M] X \<open>J \<noteq> {}\<close>
   195             by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   195             by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   196           also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
   196           also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
   197             using J `J \<noteq> {}` `j \<notin> J` A_sets X sets.sets_into_space
   197             using J \<open>J \<noteq> {}\<close> \<open>j \<notin> J\<close> A_sets X sets.sets_into_space
   198             by (auto intro!: finite_measure_Diff sets.finite_INT split: split_if_asm)
   198             by (auto intro!: finite_measure_Diff sets.finite_INT split: split_if_asm)
   199           finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   199           finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   200               prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" .
   200               prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" .
   201           moreover {
   201           moreover {
   202             have "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
   202             have "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
   203               using J A `finite J` by (intro indep_setsD[OF G(1)]) auto
   203               using J A \<open>finite J\<close> by (intro indep_setsD[OF G(1)]) auto
   204             then have "prob (\<Inter>j\<in>J. A j) = prob (space M) * (\<Prod>i\<in>J. prob (A i))"
   204             then have "prob (\<Inter>j\<in>J. A j) = prob (space M) * (\<Prod>i\<in>J. prob (A i))"
   205               using prob_space by simp }
   205               using prob_space by simp }
   206           moreover {
   206           moreover {
   207             have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = (\<Prod>i\<in>insert j J. prob ((A(j := X)) i))"
   207             have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = (\<Prod>i\<in>insert j J. prob ((A(j := X)) i))"
   208               using J A `j \<in> K` by (intro indep_setsD[OF G']) auto
   208               using J A \<open>j \<in> K\<close> by (intro indep_setsD[OF G']) auto
   209             then have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = prob X * (\<Prod>i\<in>J. prob (A i))"
   209             then have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = prob X * (\<Prod>i\<in>J. prob (A i))"
   210               using `finite J` `j \<notin> J` by (auto intro!: setprod.cong) }
   210               using \<open>finite J\<close> \<open>j \<notin> J\<close> by (auto intro!: setprod.cong) }
   211           ultimately have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = (prob (space M) - prob X) * (\<Prod>i\<in>J. prob (A i))"
   211           ultimately have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = (prob (space M) - prob X) * (\<Prod>i\<in>J. prob (A i))"
   212             by (simp add: field_simps)
   212             by (simp add: field_simps)
   213           also have "\<dots> = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))"
   213           also have "\<dots> = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))"
   214             using X A by (simp add: finite_measure_compl)
   214             using X A by (simp add: finite_measure_compl)
   215           finally show "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" .
   215           finally show "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" .
   221         proof (rule indep_sets_insert)
   221         proof (rule indep_sets_insert)
   222           fix J A assume J: "j \<notin> J" "J \<noteq> {}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> G i"
   222           fix J A assume J: "j \<notin> J" "J \<noteq> {}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> G i"
   223           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
   223           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
   224             using G by auto
   224             using G by auto
   225           have "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
   225           have "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
   226             using `J \<noteq> {}` `j \<notin> J` `j \<in> K` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   226             using \<open>J \<noteq> {}\<close> \<open>j \<notin> J\<close> \<open>j \<in> K\<close> by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   227           moreover have "(\<lambda>k. prob (\<Inter>i\<in>insert j J. (A(j := F k)) i)) sums prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
   227           moreover have "(\<lambda>k. prob (\<Inter>i\<in>insert j J. (A(j := F k)) i)) sums prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
   228           proof (rule finite_measure_UNION)
   228           proof (rule finite_measure_UNION)
   229             show "disjoint_family (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i)"
   229             show "disjoint_family (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i)"
   230               using disj by (rule disjoint_family_on_bisimulation) auto
   230               using disj by (rule disjoint_family_on_bisimulation) auto
   231             show "range (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i) \<subseteq> events"
   231             show "range (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i) \<subseteq> events"
   232               using A_sets F `finite J` `J \<noteq> {}` `j \<notin> J` by (auto intro!: sets.Int)
   232               using A_sets F \<open>finite J\<close> \<open>J \<noteq> {}\<close> \<open>j \<notin> J\<close> by (auto intro!: sets.Int)
   233           qed
   233           qed
   234           moreover { fix k
   234           moreover { fix k
   235             from J A `j \<in> K` have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * (\<Prod>i\<in>J. prob (A i))"
   235             from J A \<open>j \<in> K\<close> have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * (\<Prod>i\<in>J. prob (A i))"
   236               by (subst indep_setsD[OF F(2)]) (auto intro!: setprod.cong split: split_if_asm)
   236               by (subst indep_setsD[OF F(2)]) (auto intro!: setprod.cong split: split_if_asm)
   237             also have "\<dots> = prob (F k) * prob (\<Inter>i\<in>J. A i)"
   237             also have "\<dots> = prob (F k) * prob (\<Inter>i\<in>J. A i)"
   238               using J A `j \<in> K` by (subst indep_setsD[OF G(1)]) auto
   238               using J A \<open>j \<in> K\<close> by (subst indep_setsD[OF G(1)]) auto
   239             finally have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * prob (\<Inter>i\<in>J. A i)" . }
   239             finally have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * prob (\<Inter>i\<in>J. A i)" . }
   240           ultimately have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)))"
   240           ultimately have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)))"
   241             by simp
   241             by simp
   242           moreover
   242           moreover
   243           have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * prob (\<Inter>i\<in>J. A i))"
   243           have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * prob (\<Inter>i\<in>J. A i))"
   244             using disj F(1) by (intro finite_measure_UNION sums_mult2) auto
   244             using disj F(1) by (intro finite_measure_UNION sums_mult2) auto
   245           then have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * (\<Prod>i\<in>J. prob (A i)))"
   245           then have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * (\<Prod>i\<in>J. prob (A i)))"
   246             using J A `j \<in> K` by (subst indep_setsD[OF G(1), symmetric]) auto
   246             using J A \<open>j \<in> K\<close> by (subst indep_setsD[OF G(1), symmetric]) auto
   247           ultimately
   247           ultimately
   248           show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
   248           show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
   249             by (auto dest!: sums_unique)
   249             by (auto dest!: sums_unique)
   250         qed (insert F, auto)
   250         qed (insert F, auto)
   251       qed (insert sets.sets_into_space, auto)
   251       qed (insert sets.sets_into_space, auto)
   252       then have mono: "dynkin (space M) (G j) \<subseteq> {E \<in> events. indep_sets (G(j := {E})) K}"
   252       then have mono: "dynkin (space M) (G j) \<subseteq> {E \<in> events. indep_sets (G(j := {E})) K}"
   253       proof (rule dynkin_system.dynkin_subset, safe)
   253       proof (rule dynkin_system.dynkin_subset, safe)
   254         fix X assume "X \<in> G j"
   254         fix X assume "X \<in> G j"
   255         then show "X \<in> events" using G `j \<in> K` by auto
   255         then show "X \<in> events" using G \<open>j \<in> K\<close> by auto
   256         from `indep_sets G K`
   256         from \<open>indep_sets G K\<close>
   257         show "indep_sets (G(j := {X})) K"
   257         show "indep_sets (G(j := {X})) K"
   258           by (rule indep_sets_mono_sets) (insert `X \<in> G j`, auto)
   258           by (rule indep_sets_mono_sets) (insert \<open>X \<in> G j\<close>, auto)
   259       qed
   259       qed
   260       have "indep_sets (G(j:=?D)) K"
   260       have "indep_sets (G(j:=?D)) K"
   261       proof (rule indep_setsI)
   261       proof (rule indep_setsI)
   262         fix i assume "i \<in> K" then show "(G(j := ?D)) i \<subseteq> events"
   262         fix i assume "i \<in> K" then show "(G(j := ?D)) i \<subseteq> events"
   263           using G(2) by auto
   263           using G(2) by auto
   277         qed
   277         qed
   278       qed
   278       qed
   279       then have "indep_sets (G(j := dynkin (space M) (G j))) K"
   279       then have "indep_sets (G(j := dynkin (space M) (G j))) K"
   280         by (rule indep_sets_mono_sets) (insert mono, auto)
   280         by (rule indep_sets_mono_sets) (insert mono, auto)
   281       then show ?case
   281       then show ?case
   282         by (rule indep_sets_mono_sets) (insert `j \<in> K` `j \<notin> J`, auto simp: G_def)
   282         by (rule indep_sets_mono_sets) (insert \<open>j \<in> K\<close> \<open>j \<notin> J\<close>, auto simp: G_def)
   283     qed (insert `indep_sets F K`, simp) }
   283     qed (insert \<open>indep_sets F K\<close>, simp) }
   284   from this[OF `indep_sets F J` `finite J` subset_refl]
   284   from this[OF \<open>indep_sets F J\<close> \<open>finite J\<close> subset_refl]
   285   show "indep_sets ?F J"
   285   show "indep_sets ?F J"
   286     by (rule indep_sets_mono_sets) auto
   286     by (rule indep_sets_mono_sets) auto
   287 qed
   287 qed
   288 
   288 
   289 lemma (in prob_space) indep_sets_sigma:
   289 lemma (in prob_space) indep_sets_sigma:
   373   shows "indep_set (sigma_sets (space M) A) (sigma_sets (space M) B)"
   373   shows "indep_set (sigma_sets (space M) A) (sigma_sets (space M) B)"
   374 proof -
   374 proof -
   375   have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
   375   have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
   376   proof (rule indep_sets_sigma)
   376   proof (rule indep_sets_sigma)
   377     show "indep_sets (case_bool A B) UNIV"
   377     show "indep_sets (case_bool A B) UNIV"
   378       by (rule `indep_set A B`[unfolded indep_set_def])
   378       by (rule \<open>indep_set A B\<close>[unfolded indep_set_def])
   379     fix i show "Int_stable (case i of True \<Rightarrow> A | False \<Rightarrow> B)"
   379     fix i show "Int_stable (case i of True \<Rightarrow> A | False \<Rightarrow> B)"
   380       using A B by (cases i) auto
   380       using A B by (cases i) auto
   381   qed
   381   qed
   382   then show ?thesis
   382   then show ?thesis
   383     unfolding indep_set_def
   383     unfolding indep_set_def
   396   proof (rule indep_sets_mono_sets)
   396   proof (rule indep_sets_mono_sets)
   397     fix i assume "i \<in> I"
   397     fix i assume "i \<in> I"
   398     then have "{{x \<in> space M. P i (X i x)}} = {X i -` {x\<in>space (N i). P i x} \<inter> space M}"
   398     then have "{{x \<in> space M. P i (X i x)}} = {X i -` {x\<in>space (N i). P i x} \<inter> space M}"
   399       using indep by (auto simp: indep_vars_def dest: measurable_space)
   399       using indep by (auto simp: indep_vars_def dest: measurable_space)
   400     also have "\<dots> \<subseteq> {X i -` A \<inter> space M |A. A \<in> sets (N i)}"
   400     also have "\<dots> \<subseteq> {X i -` A \<inter> space M |A. A \<in> sets (N i)}"
   401       using P[OF `i \<in> I`] by blast
   401       using P[OF \<open>i \<in> I\<close>] by blast
   402     finally show "{{x \<in> space M. P i (X i x)}} \<subseteq> {X i -` A \<inter> space M |A. A \<in> sets (N i)}" .
   402     finally show "{{x \<in> space M. P i (X i x)}} \<subseteq> {X i -` A \<inter> space M |A. A \<in> sets (N i)}" .
   403   qed
   403   qed
   404 qed                              
   404 qed                              
   405 
   405 
   406 lemma (in prob_space) indep_sets_collect_sigma:
   406 lemma (in prob_space) indep_sets_collect_sigma:
   455 
   455 
   456       { fix k l j assume "k \<in> K" "j \<in> K" "l \<in> L j" "l \<in> L k"
   456       { fix k l j assume "k \<in> K" "j \<in> K" "l \<in> L j" "l \<in> L k"
   457         have "k = j"
   457         have "k = j"
   458         proof (rule ccontr)
   458         proof (rule ccontr)
   459           assume "k \<noteq> j"
   459           assume "k \<noteq> j"
   460           with disjoint `K \<subseteq> J` `k \<in> K` `j \<in> K` have "I k \<inter> I j = {}"
   460           with disjoint \<open>K \<subseteq> J\<close> \<open>k \<in> K\<close> \<open>j \<in> K\<close> have "I k \<inter> I j = {}"
   461             unfolding disjoint_family_on_def by auto
   461             unfolding disjoint_family_on_def by auto
   462           with L(2,3)[OF `j \<in> K`] L(2,3)[OF `k \<in> K`]
   462           with L(2,3)[OF \<open>j \<in> K\<close>] L(2,3)[OF \<open>k \<in> K\<close>]
   463           show False using `l \<in> L k` `l \<in> L j` by auto
   463           show False using \<open>l \<in> L k\<close> \<open>l \<in> L j\<close> by auto
   464         qed }
   464         qed }
   465       note L_inj = this
   465       note L_inj = this
   466 
   466 
   467       def k \<equiv> "\<lambda>l. (SOME k. k \<in> K \<and> l \<in> L k)"
   467       def k \<equiv> "\<lambda>l. (SOME k. k \<in> K \<and> l \<in> L k)"
   468       { fix x j l assume *: "j \<in> K" "l \<in> L j"
   468       { fix x j l assume *: "j \<in> K" "l \<in> L j"
   492       fix b assume "b \<in> ?E j" then obtain Kb Eb
   492       fix b assume "b \<in> ?E j" then obtain Kb Eb
   493         where b: "b = (\<Inter>k\<in>Kb. Eb k)" "finite Kb" "Kb \<noteq> {}" "Kb \<subseteq> I j" "\<And>k. k\<in>Kb \<Longrightarrow> Eb k \<in> E k" by auto
   493         where b: "b = (\<Inter>k\<in>Kb. Eb k)" "finite Kb" "Kb \<noteq> {}" "Kb \<subseteq> I j" "\<And>k. k\<in>Kb \<Longrightarrow> Eb k \<in> E k" by auto
   494       let ?A = "\<lambda>k. (if k \<in> Ka \<inter> Kb then Ea k \<inter> Eb k else if k \<in> Kb then Eb k else if k \<in> Ka then Ea k else {})"
   494       let ?A = "\<lambda>k. (if k \<in> Ka \<inter> Kb then Ea k \<inter> Eb k else if k \<in> Kb then Eb k else if k \<in> Ka then Ea k else {})"
   495       have "a \<inter> b = INTER (Ka \<union> Kb) ?A"
   495       have "a \<inter> b = INTER (Ka \<union> Kb) ?A"
   496         by (simp add: a b set_eq_iff) auto
   496         by (simp add: a b set_eq_iff) auto
   497       with a b `j \<in> J` Int_stableD[OF Int_stable] show "a \<inter> b \<in> ?E j"
   497       with a b \<open>j \<in> J\<close> Int_stableD[OF Int_stable] show "a \<inter> b \<in> ?E j"
   498         by (intro CollectI exI[of _ "Ka \<union> Kb"] exI[of _ ?A]) auto
   498         by (intro CollectI exI[of _ "Ka \<union> Kb"] exI[of _ ?A]) auto
   499     qed
   499     qed
   500   qed
   500   qed
   501   ultimately show ?thesis
   501   ultimately show ?thesis
   502     by (simp cong: indep_sets_cong)
   502     by (simp cong: indep_sets_cong)
   534         assume "K j \<noteq> {}" with J have "J \<noteq> {}"
   534         assume "K j \<noteq> {}" with J have "J \<noteq> {}"
   535           by auto
   535           by auto
   536         { interpret sigma_algebra "space M" "?UN j"
   536         { interpret sigma_algebra "space M" "?UN j"
   537             by (rule sigma_algebra_sigma_sets) auto 
   537             by (rule sigma_algebra_sigma_sets) auto 
   538           have "\<And>A. (\<And>i. i \<in> J \<Longrightarrow> A i \<in> ?UN j) \<Longrightarrow> INTER J A \<in> ?UN j"
   538           have "\<And>A. (\<And>i. i \<in> J \<Longrightarrow> A i \<in> ?UN j) \<Longrightarrow> INTER J A \<in> ?UN j"
   539             using `finite J` `J \<noteq> {}` by (rule finite_INT) blast }
   539             using \<open>finite J\<close> \<open>J \<noteq> {}\<close> by (rule finite_INT) blast }
   540         note INT = this
   540         note INT = this
   541 
   541 
   542         from `J \<noteq> {}` J K E[rule_format, THEN sets.sets_into_space] j
   542         from \<open>J \<noteq> {}\<close> J K E[rule_format, THEN sets.sets_into_space] j
   543         have "(\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>) -` prod_emb (K j) M' J (Pi\<^sub>E J E) \<inter> space M
   543         have "(\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>) -` prod_emb (K j) M' J (Pi\<^sub>E J E) \<inter> space M
   544           = (\<Inter>i\<in>J. X i -` E i \<inter> space M)"
   544           = (\<Inter>i\<in>J. X i -` E i \<inter> space M)"
   545           apply (subst prod_emb_PiE[OF _ ])
   545           apply (subst prod_emb_PiE[OF _ ])
   546           apply auto []
   546           apply auto []
   547           apply auto []
   547           apply auto []
   550           apply auto
   550           apply auto
   551           done
   551           done
   552         also have "\<dots> \<in> ?UN j"
   552         also have "\<dots> \<in> ?UN j"
   553           apply (rule INT)
   553           apply (rule INT)
   554           apply (rule sigma_sets.Basic)
   554           apply (rule sigma_sets.Basic)
   555           using `J \<subseteq> K j` E
   555           using \<open>J \<subseteq> K j\<close> E
   556           apply auto
   556           apply auto
   557           done
   557           done
   558         finally show ?thesis .
   558         finally show ?thesis .
   559       qed
   559       qed
   560     qed
   560     qed
   628   { fix X x assume "X \<in> ?A" "x \<in> X"
   628   { fix X x assume "X \<in> ?A" "x \<in> X"
   629     then have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by auto
   629     then have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by auto
   630     from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
   630     from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
   631     then have "X \<subseteq> space M"
   631     then have "X \<subseteq> space M"
   632       by induct (insert A.sets_into_space, auto)
   632       by induct (insert A.sets_into_space, auto)
   633     with `x \<in> X` show "x \<in> space M" by auto }
   633     with \<open>x \<in> X\<close> show "x \<in> space M" by auto }
   634   { fix F :: "nat \<Rightarrow> 'a set" and n assume "range F \<subseteq> ?A"
   634   { fix F :: "nat \<Rightarrow> 'a set" and n assume "range F \<subseteq> ?A"
   635     then show "(UNION UNIV F) \<in> sigma_sets (space M) (UNION {n..} A)"
   635     then show "(UNION UNIV F) \<in> sigma_sets (space M) (UNION {n..} A)"
   636       by (intro sigma_sets.Union) auto }
   636       by (intro sigma_sets.Union) auto }
   637 qed (auto intro!: sigma_sets.Compl sigma_sets.Empty)
   637 qed (auto intro!: sigma_sets.Compl sigma_sets.Empty)
   638 
   638 
   659   proof (rule dynkin_systemI)
   659   proof (rule dynkin_systemI)
   660     fix D assume "D \<in> ?D" then show "D \<subseteq> space M"
   660     fix D assume "D \<in> ?D" then show "D \<subseteq> space M"
   661       using sets.sets_into_space by auto
   661       using sets.sets_into_space by auto
   662   next
   662   next
   663     show "space M \<in> ?D"
   663     show "space M \<in> ?D"
   664       using prob_space `X \<subseteq> space M` by (simp add: Int_absorb2)
   664       using prob_space \<open>X \<subseteq> space M\<close> by (simp add: Int_absorb2)
   665   next
   665   next
   666     fix A assume A: "A \<in> ?D"
   666     fix A assume A: "A \<in> ?D"
   667     have "prob (X \<inter> (space M - A)) = prob (X - (X \<inter> A))"
   667     have "prob (X \<inter> (space M - A)) = prob (X - (X \<inter> A))"
   668       using `X \<subseteq> space M` by (auto intro!: arg_cong[where f=prob])
   668       using \<open>X \<subseteq> space M\<close> by (auto intro!: arg_cong[where f=prob])
   669     also have "\<dots> = prob X - prob (X \<inter> A)"
   669     also have "\<dots> = prob X - prob (X \<inter> A)"
   670       using X_in A by (intro finite_measure_Diff) auto
   670       using X_in A by (intro finite_measure_Diff) auto
   671     also have "\<dots> = prob X * prob (space M) - prob X * prob A"
   671     also have "\<dots> = prob X * prob (space M) - prob X * prob A"
   672       using A prob_space by auto
   672       using A prob_space by auto
   673     also have "\<dots> = prob X * prob (space M - A)"
   673     also have "\<dots> = prob X * prob (space M - A)"
   674       using X_in A sets.sets_into_space
   674       using X_in A sets.sets_into_space
   675       by (subst finite_measure_Diff) (auto simp: field_simps)
   675       by (subst finite_measure_Diff) (auto simp: field_simps)
   676     finally show "space M - A \<in> ?D"
   676     finally show "space M - A \<in> ?D"
   677       using A `X \<subseteq> space M` by auto
   677       using A \<open>X \<subseteq> space M\<close> by auto
   678   next
   678   next
   679     fix F :: "nat \<Rightarrow> 'a set" assume dis: "disjoint_family F" and "range F \<subseteq> ?D"
   679     fix F :: "nat \<Rightarrow> 'a set" assume dis: "disjoint_family F" and "range F \<subseteq> ?D"
   680     then have F: "range F \<subseteq> events" "\<And>i. prob (X \<inter> F i) = prob X * prob (F i)"
   680     then have F: "range F \<subseteq> events" "\<And>i. prob (X \<inter> F i) = prob X * prob (F i)"
   681       by auto
   681       by auto
   682     have "(\<lambda>i. prob (X \<inter> F i)) sums prob (\<Union>i. X \<inter> F i)"
   682     have "(\<lambda>i. prob (X \<inter> F i)) sums prob (\<Union>i. X \<inter> F i)"
   724         by (auto simp add: ac_simps)
   724         by (auto simp add: ac_simps)
   725     qed }
   725     qed }
   726   then have "(\<Union>n. sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) \<subseteq> ?D" (is "?A \<subseteq> _")
   726   then have "(\<Union>n. sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) \<subseteq> ?D" (is "?A \<subseteq> _")
   727     by auto
   727     by auto
   728 
   728 
   729   note `X \<in> tail_events A`
   729   note \<open>X \<in> tail_events A\<close>
   730   also {
   730   also {
   731     have "\<And>n. sigma_sets (space M) (\<Union>i\<in>{n..}. A i) \<subseteq> sigma_sets (space M) ?A"
   731     have "\<And>n. sigma_sets (space M) (\<Union>i\<in>{n..}. A i) \<subseteq> sigma_sets (space M) ?A"
   732       by (intro sigma_sets_subseteq UN_mono) auto
   732       by (intro sigma_sets_subseteq UN_mono) auto
   733    then have "tail_events A \<subseteq> sigma_sets (space M) ?A"
   733    then have "tail_events A \<subseteq> sigma_sets (space M) ?A"
   734       unfolding tail_events_def by auto }
   734       unfolding tail_events_def by auto }
   755         using Amn.Int[of a b] by simp
   755         using Amn.Int[of a b] by simp
   756       then show "a \<inter> b \<in> (\<Union>n. sigma_sets (space M) (\<Union>i\<in>{..n}. A i))" by auto
   756       then show "a \<inter> b \<in> (\<Union>n. sigma_sets (space M) (\<Union>i\<in>{..n}. A i))" by auto
   757     qed
   757     qed
   758   qed
   758   qed
   759   also have "dynkin (space M) ?A \<subseteq> ?D"
   759   also have "dynkin (space M) ?A \<subseteq> ?D"
   760     using `?A \<subseteq> ?D` by (auto intro!: D.dynkin_subset)
   760     using \<open>?A \<subseteq> ?D\<close> by (auto intro!: D.dynkin_subset)
   761   finally show ?thesis by auto
   761   finally show ?thesis by auto
   762 qed
   762 qed
   763 
   763 
   764 lemma (in prob_space) borel_0_1_law:
   764 lemma (in prob_space) borel_0_1_law:
   765   fixes F :: "nat \<Rightarrow> 'a set"
   765   fixes F :: "nat \<Rightarrow> 'a set"
   836     from A F have "(\<lambda>j. if j \<in> J then A j else space M) \<in> Pi I F" (is "?A \<in> _")
   836     from A F have "(\<lambda>j. if j \<in> J then A j else space M) \<in> Pi I F" (is "?A \<in> _")
   837       by (auto split: split_if_asm)
   837       by (auto split: split_if_asm)
   838     with indep have "prob (\<Inter>j\<in>I. ?A j) = (\<Prod>j\<in>I. prob (?A j))"
   838     with indep have "prob (\<Inter>j\<in>I. ?A j) = (\<Prod>j\<in>I. prob (?A j))"
   839       by auto
   839       by auto
   840     also have "\<dots> = (\<Prod>j\<in>J. prob (A j))"
   840     also have "\<dots> = (\<Prod>j\<in>J. prob (A j))"
   841       unfolding if_distrib setprod.If_cases[OF `finite I`]
   841       unfolding if_distrib setprod.If_cases[OF \<open>finite I\<close>]
   842       using prob_space `J \<subseteq> I` by (simp add: Int_absorb1 setprod.neutral_const)
   842       using prob_space \<open>J \<subseteq> I\<close> by (simp add: Int_absorb1 setprod.neutral_const)
   843     finally show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" ..
   843     finally show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" ..
   844   qed
   844   qed
   845 qed
   845 qed
   846 
   846 
   847 lemma (in prob_space) indep_vars_finite:
   847 lemma (in prob_space) indep_vars_finite:
   856 proof -
   856 proof -
   857   from rv have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> space M \<rightarrow> space (M' i)"
   857   from rv have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> space M \<rightarrow> space (M' i)"
   858     unfolding measurable_def by simp
   858     unfolding measurable_def by simp
   859 
   859 
   860   { fix i assume "i\<in>I"
   860   { fix i assume "i\<in>I"
   861     from closed[OF `i \<in> I`]
   861     from closed[OF \<open>i \<in> I\<close>]
   862     have "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}
   862     have "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}
   863       = sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> E i}"
   863       = sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> E i}"
   864       unfolding sigma_sets_vimage_commute[OF X, OF `i \<in> I`, symmetric] M'[OF `i \<in> I`]
   864       unfolding sigma_sets_vimage_commute[OF X, OF \<open>i \<in> I\<close>, symmetric] M'[OF \<open>i \<in> I\<close>]
   865       by (subst sigma_sets_sigma_sets_eq) auto }
   865       by (subst sigma_sets_sigma_sets_eq) auto }
   866   note sigma_sets_X = this
   866   note sigma_sets_X = this
   867 
   867 
   868   { fix i assume "i\<in>I"
   868   { fix i assume "i\<in>I"
   869     have "Int_stable {X i -` A \<inter> space M |A. A \<in> E i}"
   869     have "Int_stable {X i -` A \<inter> space M |A. A \<in> E i}"
   873       moreover
   873       moreover
   874       fix b assume "b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   874       fix b assume "b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   875       then obtain B where "b = X i -` B \<inter> space M" "B \<in> E i" by auto
   875       then obtain B where "b = X i -` B \<inter> space M" "B \<in> E i" by auto
   876       moreover
   876       moreover
   877       have "(X i -` A \<inter> space M) \<inter> (X i -` B \<inter> space M) = X i -` (A \<inter> B) \<inter> space M" by auto
   877       have "(X i -` A \<inter> space M) \<inter> (X i -` B \<inter> space M) = X i -` (A \<inter> B) \<inter> space M" by auto
   878       moreover note Int_stable[OF `i \<in> I`]
   878       moreover note Int_stable[OF \<open>i \<in> I\<close>]
   879       ultimately
   879       ultimately
   880       show "a \<inter> b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   880       show "a \<inter> b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   881         by (auto simp del: vimage_Int intro!: exI[of _ "A \<inter> B"] dest: Int_stableD)
   881         by (auto simp del: vimage_Int intro!: exI[of _ "A \<inter> B"] dest: Int_stableD)
   882     qed }
   882     qed }
   883   note indep_sets_X = indep_sets_sigma_sets_iff[OF this]
   883   note indep_sets_X = indep_sets_sigma_sets_iff[OF this]
   884 
   884 
   885   { fix i assume "i \<in> I"
   885   { fix i assume "i \<in> I"
   886     { fix A assume "A \<in> E i"
   886     { fix A assume "A \<in> E i"
   887       with M'[OF `i \<in> I`] have "A \<in> sets (M' i)" by auto
   887       with M'[OF \<open>i \<in> I\<close>] have "A \<in> sets (M' i)" by auto
   888       moreover
   888       moreover
   889       from rv[OF `i\<in>I`] have "X i \<in> measurable M (M' i)" by auto
   889       from rv[OF \<open>i\<in>I\<close>] have "X i \<in> measurable M (M' i)" by auto
   890       ultimately
   890       ultimately
   891       have "X i -` A \<inter> space M \<in> sets M" by (auto intro: measurable_sets) }
   891       have "X i -` A \<inter> space M \<in> sets M" by (auto intro: measurable_sets) }
   892     with X[OF `i\<in>I`] space[OF `i\<in>I`]
   892     with X[OF \<open>i\<in>I\<close>] space[OF \<open>i\<in>I\<close>]
   893     have "{X i -` A \<inter> space M |A. A \<in> E i} \<subseteq> events"
   893     have "{X i -` A \<inter> space M |A. A \<in> E i} \<subseteq> events"
   894       "space M \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   894       "space M \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   895       by (auto intro!: exI[of _ "space (M' i)"]) }
   895       by (auto intro!: exI[of _ "space (M' i)"]) }
   896   note indep_sets_finite_X = indep_sets_finite[OF I this]
   896   note indep_sets_finite_X = indep_sets_finite[OF I this]
   897 
   897 
   898   have "(\<forall>A\<in>\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i}. prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))) =
   898   have "(\<forall>A\<in>\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i}. prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))) =
   899     (\<forall>A\<in>\<Pi> i\<in>I. E i. prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M)))"
   899     (\<forall>A\<in>\<Pi> i\<in>I. E i. prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M)))"
   900     (is "?L = ?R")
   900     (is "?L = ?R")
   901   proof safe
   901   proof safe
   902     fix A assume ?L and A: "A \<in> (\<Pi> i\<in>I. E i)"
   902     fix A assume ?L and A: "A \<in> (\<Pi> i\<in>I. E i)"
   903     from `?L`[THEN bspec, of "\<lambda>i. X i -` A i \<inter> space M"] A `I \<noteq> {}`
   903     from \<open>?L\<close>[THEN bspec, of "\<lambda>i. X i -` A i \<inter> space M"] A \<open>I \<noteq> {}\<close>
   904     show "prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M))"
   904     show "prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M))"
   905       by (auto simp add: Pi_iff)
   905       by (auto simp add: Pi_iff)
   906   next
   906   next
   907     fix A assume ?R and A: "A \<in> (\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i})"
   907     fix A assume ?R and A: "A \<in> (\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i})"
   908     from A have "\<forall>i\<in>I. \<exists>B. A i = X i -` B \<inter> space M \<and> B \<in> E i" by auto
   908     from A have "\<forall>i\<in>I. \<exists>B. A i = X i -` B \<inter> space M \<and> B \<in> E i" by auto
   909     from bchoice[OF this] obtain B where B: "\<forall>i\<in>I. A i = X i -` B i \<inter> space M"
   909     from bchoice[OF this] obtain B where B: "\<forall>i\<in>I. A i = X i -` B i \<inter> space M"
   910       "B \<in> (\<Pi> i\<in>I. E i)" by auto
   910       "B \<in> (\<Pi> i\<in>I. E i)" by auto
   911     from `?R`[THEN bspec, OF B(2)] B(1) `I \<noteq> {}`
   911     from \<open>?R\<close>[THEN bspec, OF B(2)] B(1) \<open>I \<noteq> {}\<close>
   912     show "prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))"
   912     show "prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))"
   913       by simp
   913       by simp
   914   qed
   914   qed
   915   then show ?thesis using `I \<noteq> {}`
   915   then show ?thesis using \<open>I \<noteq> {}\<close>
   916     by (simp add: rv indep_vars_def indep_sets_X sigma_sets_X indep_sets_finite_X cong: indep_sets_cong)
   916     by (simp add: rv indep_vars_def indep_sets_X sigma_sets_X indep_sets_finite_X cong: indep_sets_cong)
   917 qed
   917 qed
   918 
   918 
   919 lemma (in prob_space) indep_vars_compose:
   919 lemma (in prob_space) indep_vars_compose:
   920   assumes "indep_vars M' X I"
   920   assumes "indep_vars M' X I"
   921   assumes rv: "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)"
   921   assumes rv: "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)"
   922   shows "indep_vars N (\<lambda>i. Y i \<circ> X i) I"
   922   shows "indep_vars N (\<lambda>i. Y i \<circ> X i) I"
   923   unfolding indep_vars_def
   923   unfolding indep_vars_def
   924 proof
   924 proof
   925   from rv `indep_vars M' X I`
   925   from rv \<open>indep_vars M' X I\<close>
   926   show "\<forall>i\<in>I. random_variable (N i) (Y i \<circ> X i)"
   926   show "\<forall>i\<in>I. random_variable (N i) (Y i \<circ> X i)"
   927     by (auto simp: indep_vars_def)
   927     by (auto simp: indep_vars_def)
   928 
   928 
   929   have "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
   929   have "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
   930     using `indep_vars M' X I` by (simp add: indep_vars_def)
   930     using \<open>indep_vars M' X I\<close> by (simp add: indep_vars_def)
   931   then show "indep_sets (\<lambda>i. sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)}) I"
   931   then show "indep_sets (\<lambda>i. sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)}) I"
   932   proof (rule indep_sets_mono_sets)
   932   proof (rule indep_sets_mono_sets)
   933     fix i assume "i \<in> I"
   933     fix i assume "i \<in> I"
   934     with `indep_vars M' X I` have X: "X i \<in> space M \<rightarrow> space (M' i)"
   934     with \<open>indep_vars M' X I\<close> have X: "X i \<in> space M \<rightarrow> space (M' i)"
   935       unfolding indep_vars_def measurable_def by auto
   935       unfolding indep_vars_def measurable_def by auto
   936     { fix A assume "A \<in> sets (N i)"
   936     { fix A assume "A \<in> sets (N i)"
   937       then have "\<exists>B. (Y i \<circ> X i) -` A \<inter> space M = X i -` B \<inter> space M \<and> B \<in> sets (M' i)"
   937       then have "\<exists>B. (Y i \<circ> X i) -` A \<inter> space M = X i -` B \<inter> space M \<and> B \<in> sets (M' i)"
   938         by (intro exI[of _ "Y i -` A \<inter> space (M' i)"])
   938         by (intro exI[of _ "Y i -` A \<inter> space (M' i)"])
   939            (auto simp: vimage_comp intro!: measurable_sets rv `i \<in> I` funcset_mem[OF X]) }
   939            (auto simp: vimage_comp intro!: measurable_sets rv \<open>i \<in> I\<close> funcset_mem[OF X]) }
   940     then show "sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)} \<subseteq>
   940     then show "sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)} \<subseteq>
   941       sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   941       sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   942       by (intro sigma_sets_subseteq) (auto simp: vimage_comp)
   942       by (intro sigma_sets_subseteq) (auto simp: vimage_comp)
   943   qed
   943   qed
   944 qed
   944 qed
  1076 
  1076 
  1077       from E have "E \<in> sets ?P" by (auto simp: sets_PiM)
  1077       from E have "E \<in> sets ?P" by (auto simp: sets_PiM)
  1078       then have "emeasure ?D E = emeasure M (?X -` E \<inter> space M)"
  1078       then have "emeasure ?D E = emeasure M (?X -` E \<inter> space M)"
  1079         by (simp add: emeasure_distr X)
  1079         by (simp add: emeasure_distr X)
  1080       also have "?X -` E \<inter> space M = (\<Inter>i\<in>J. X i -` Y i \<inter> space M)"
  1080       also have "?X -` E \<inter> space M = (\<Inter>i\<in>J. X i -` Y i \<inter> space M)"
  1081         using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: split_if_asm)
  1081         using J \<open>I \<noteq> {}\<close> measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: split_if_asm)
  1082       also have "emeasure M (\<Inter>i\<in>J. X i -` Y i \<inter> space M) = (\<Prod> i\<in>J. emeasure M (X i -` Y i \<inter> space M))"
  1082       also have "emeasure M (\<Inter>i\<in>J. X i -` Y i \<inter> space M) = (\<Prod> i\<in>J. emeasure M (X i -` Y i \<inter> space M))"
  1083         using `indep_vars M' X I` J `I \<noteq> {}` using indep_varsD[of M' X I J]
  1083         using \<open>indep_vars M' X I\<close> J \<open>I \<noteq> {}\<close> using indep_varsD[of M' X I J]
  1084         by (auto simp: emeasure_eq_measure setprod_ereal)
  1084         by (auto simp: emeasure_eq_measure setprod_ereal)
  1085       also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
  1085       also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
  1086         using rv J by (simp add: emeasure_distr)
  1086         using rv J by (simp add: emeasure_distr)
  1087       also have "\<dots> = emeasure ?P' E"
  1087       also have "\<dots> = emeasure ?P' E"
  1088         using P.emeasure_PiM_emb[of J Y] J by (simp add: prod_emb_def)
  1088         using P.emeasure_PiM_emb[of J Y] J by (simp add: prod_emb_def)
  1107       qed
  1107       qed
  1108       from bchoice[OF this] obtain Y where
  1108       from bchoice[OF this] obtain Y where
  1109         Y: "\<And>j. j \<in> J \<Longrightarrow> Y' j = X j -` Y j \<inter> space M" "\<And>j. j \<in> J \<Longrightarrow> Y j \<in> sets (M' j)" by auto
  1109         Y: "\<And>j. j \<in> J \<Longrightarrow> Y' j = X j -` Y j \<inter> space M" "\<And>j. j \<in> J \<Longrightarrow> Y j \<in> sets (M' j)" by auto
  1110       let ?E = "prod_emb I M' J (Pi\<^sub>E J Y)"
  1110       let ?E = "prod_emb I M' J (Pi\<^sub>E J Y)"
  1111       from Y have "(\<Inter>j\<in>J. Y' j) = ?X -` ?E \<inter> space M"
  1111       from Y have "(\<Inter>j\<in>J. Y' j) = ?X -` ?E \<inter> space M"
  1112         using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: split_if_asm)
  1112         using J \<open>I \<noteq> {}\<close> measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: split_if_asm)
  1113       then have "emeasure M (\<Inter>j\<in>J. Y' j) = emeasure M (?X -` ?E \<inter> space M)"
  1113       then have "emeasure M (\<Inter>j\<in>J. Y' j) = emeasure M (?X -` ?E \<inter> space M)"
  1114         by simp
  1114         by simp
  1115       also have "\<dots> = emeasure ?D ?E"
  1115       also have "\<dots> = emeasure ?D ?E"
  1116         using Y  J by (intro emeasure_distr[symmetric] X sets_PiM_I) auto
  1116         using Y  J by (intro emeasure_distr[symmetric] X sets_PiM_I) auto
  1117       also have "\<dots> = emeasure ?P' ?E"
  1117       also have "\<dots> = emeasure ?P' ?E"
  1118         using `?D = ?P'` by simp
  1118         using \<open>?D = ?P'\<close> by simp
  1119       also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
  1119       also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
  1120         using P.emeasure_PiM_emb[of J Y] J Y by (simp add: prod_emb_def)
  1120         using P.emeasure_PiM_emb[of J Y] J Y by (simp add: prod_emb_def)
  1121       also have "\<dots> = (\<Prod> i\<in>J. emeasure M (Y' i))"
  1121       also have "\<dots> = (\<Prod> i\<in>J. emeasure M (Y' i))"
  1122         using rv J Y by (simp add: emeasure_distr)
  1122         using rv J Y by (simp add: emeasure_distr)
  1123       finally have "emeasure M (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. emeasure M (Y' i))" .
  1123       finally have "emeasure M (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. emeasure M (Y' i))" .
  1189 
  1189 
  1190     fix A B assume A: "A \<in> sets ?S" and B: "B \<in> sets ?T"
  1190     fix A B assume A: "A \<in> sets ?S" and B: "B \<in> sets ?T"
  1191     have "emeasure ?J (A \<times> B) = emeasure M ((\<lambda>x. (X x, Y x)) -` (A \<times> B) \<inter> space M)"
  1191     have "emeasure ?J (A \<times> B) = emeasure M ((\<lambda>x. (X x, Y x)) -` (A \<times> B) \<inter> space M)"
  1192       using A B by (intro emeasure_distr[OF XY]) auto
  1192       using A B by (intro emeasure_distr[OF XY]) auto
  1193     also have "\<dots> = emeasure M (X -` A \<inter> space M) * emeasure M (Y -` B \<inter> space M)"
  1193     also have "\<dots> = emeasure M (X -` A \<inter> space M) * emeasure M (Y -` B \<inter> space M)"
  1194       using indep_varD[OF `indep_var S X T Y`, of A B] A B by (simp add: emeasure_eq_measure)
  1194       using indep_varD[OF \<open>indep_var S X T Y\<close>, of A B] A B by (simp add: emeasure_eq_measure)
  1195     also have "\<dots> = emeasure ?S A * emeasure ?T B"
  1195     also have "\<dots> = emeasure ?S A * emeasure ?T B"
  1196       using rvs A B by (simp add: emeasure_distr)
  1196       using rvs A B by (simp add: emeasure_distr)
  1197     finally show "emeasure ?S A * emeasure ?T B = emeasure ?J (A \<times> B)" by simp
  1197     finally show "emeasure ?S A * emeasure ?T B = emeasure ?J (A \<times> B)" by simp
  1198   qed simp
  1198   qed simp
  1199 next
  1199 next
  1220   show "indep_var S X T Y" unfolding indep_var_eq
  1220   show "indep_var S X T Y" unfolding indep_var_eq
  1221   proof (intro conjI indep_set_sigma_sets Int_stable rvs)
  1221   proof (intro conjI indep_set_sigma_sets Int_stable rvs)
  1222     show "indep_set {X -` A \<inter> space M |A. A \<in> sets S} {Y -` A \<inter> space M |A. A \<in> sets T}"
  1222     show "indep_set {X -` A \<inter> space M |A. A \<in> sets S} {Y -` A \<inter> space M |A. A \<in> sets T}"
  1223     proof (safe intro!: indep_setI)
  1223     proof (safe intro!: indep_setI)
  1224       { fix A assume "A \<in> sets S" then show "X -` A \<inter> space M \<in> sets M"
  1224       { fix A assume "A \<in> sets S" then show "X -` A \<inter> space M \<in> sets M"
  1225         using `X \<in> measurable M S` by (auto intro: measurable_sets) }
  1225         using \<open>X \<in> measurable M S\<close> by (auto intro: measurable_sets) }
  1226       { fix A assume "A \<in> sets T" then show "Y -` A \<inter> space M \<in> sets M"
  1226       { fix A assume "A \<in> sets T" then show "Y -` A \<inter> space M \<in> sets M"
  1227         using `Y \<in> measurable M T` by (auto intro: measurable_sets) }
  1227         using \<open>Y \<in> measurable M T\<close> by (auto intro: measurable_sets) }
  1228     next
  1228     next
  1229       fix A B assume ab: "A \<in> sets S" "B \<in> sets T"
  1229       fix A B assume ab: "A \<in> sets S" "B \<in> sets T"
  1230       then have "ereal (prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M))) = emeasure ?J (A \<times> B)"
  1230       then have "ereal (prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M))) = emeasure ?J (A \<times> B)"
  1231         using XY by (auto simp add: emeasure_distr emeasure_eq_measure intro!: arg_cong[where f="prob"])
  1231         using XY by (auto simp add: emeasure_distr emeasure_eq_measure intro!: arg_cong[where f="prob"])
  1232       also have "\<dots> = emeasure (?S \<Otimes>\<^sub>M ?T) (A \<times> B)"
  1232       also have "\<dots> = emeasure (?S \<Otimes>\<^sub>M ?T) (A \<times> B)"
  1233         unfolding `?S \<Otimes>\<^sub>M ?T = ?J` ..
  1233         unfolding \<open>?S \<Otimes>\<^sub>M ?T = ?J\<close> ..
  1234       also have "\<dots> = emeasure ?S A * emeasure ?T B"
  1234       also have "\<dots> = emeasure ?S A * emeasure ?T B"
  1235         using ab by (simp add: Y.emeasure_pair_measure_Times)
  1235         using ab by (simp add: Y.emeasure_pair_measure_Times)
  1236       finally show "prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M)) =
  1236       finally show "prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M)) =
  1237         prob (X -` A \<inter> space M) * prob (Y -` B \<inter> space M)"
  1237         prob (X -` A \<inter> space M) * prob (Y -` B \<inter> space M)"
  1238         using rvs ab by (simp add: emeasure_eq_measure emeasure_distr)
  1238         using rvs ab by (simp add: emeasure_eq_measure emeasure_distr)
  1273   have "(\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. max 0 (Y i \<omega>)) \<partial>M)"
  1273   have "(\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. max 0 (Y i \<omega>)) \<partial>M)"
  1274     using I(3) by (auto intro!: nn_integral_cong setprod.cong simp add: Y_def max_def)
  1274     using I(3) by (auto intro!: nn_integral_cong setprod.cong simp add: Y_def max_def)
  1275   also have "\<dots> = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. max 0 (\<omega> i)) \<partial>distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x))"
  1275   also have "\<dots> = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. max 0 (\<omega> i)) \<partial>distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x))"
  1276     by (subst nn_integral_distr) auto
  1276     by (subst nn_integral_distr) auto
  1277   also have "\<dots> = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. max 0 (\<omega> i)) \<partial>Pi\<^sub>M I (\<lambda>i. distr M borel (Y i)))"
  1277   also have "\<dots> = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. max 0 (\<omega> i)) \<partial>Pi\<^sub>M I (\<lambda>i. distr M borel (Y i)))"
  1278     unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF `I \<noteq> {}` rv_Y indep_Y] ..
  1278     unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF \<open>I \<noteq> {}\<close> rv_Y indep_Y] ..
  1279   also have "\<dots> = (\<Prod>i\<in>I. (\<integral>\<^sup>+\<omega>. max 0 \<omega> \<partial>distr M borel (Y i)))"
  1279   also have "\<dots> = (\<Prod>i\<in>I. (\<integral>\<^sup>+\<omega>. max 0 \<omega> \<partial>distr M borel (Y i)))"
  1280     by (rule product_nn_integral_setprod) (auto intro: `finite I`)
  1280     by (rule product_nn_integral_setprod) (auto intro: \<open>finite I\<close>)
  1281   also have "\<dots> = (\<Prod>i\<in>I. \<integral>\<^sup>+\<omega>. X i \<omega> \<partial>M)"
  1281   also have "\<dots> = (\<Prod>i\<in>I. \<integral>\<^sup>+\<omega>. X i \<omega> \<partial>M)"
  1282     by (intro setprod.cong nn_integral_cong)
  1282     by (intro setprod.cong nn_integral_cong)
  1283        (auto simp: nn_integral_distr nn_integral_max_0 Y_def rv_X)
  1283        (auto simp: nn_integral_distr nn_integral_max_0 Y_def rv_X)
  1284   finally show ?thesis .
  1284   finally show ?thesis .
  1285 qed (simp add: emeasure_space_1)
  1285 qed (simp add: emeasure_space_1)
  1315   have "(\<integral>\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<integral>\<omega>. (\<Prod>i\<in>I. Y i \<omega>) \<partial>M)"
  1315   have "(\<integral>\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<integral>\<omega>. (\<Prod>i\<in>I. Y i \<omega>) \<partial>M)"
  1316     using I(3) by (simp add: Y_def)
  1316     using I(3) by (simp add: Y_def)
  1317   also have "\<dots> = (\<integral>\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x))"
  1317   also have "\<dots> = (\<integral>\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x))"
  1318     by (subst integral_distr) auto
  1318     by (subst integral_distr) auto
  1319   also have "\<dots> = (\<integral>\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>Pi\<^sub>M I (\<lambda>i. distr M borel (Y i)))"
  1319   also have "\<dots> = (\<integral>\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>Pi\<^sub>M I (\<lambda>i. distr M borel (Y i)))"
  1320     unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF `I \<noteq> {}` rv_Y indep_Y] ..
  1320     unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF \<open>I \<noteq> {}\<close> rv_Y indep_Y] ..
  1321   also have "\<dots> = (\<Prod>i\<in>I. (\<integral>\<omega>. \<omega> \<partial>distr M borel (Y i)))"
  1321   also have "\<dots> = (\<Prod>i\<in>I. (\<integral>\<omega>. \<omega> \<partial>distr M borel (Y i)))"
  1322     by (rule product_integral_setprod) (auto intro: `finite I` simp: integrable_distr_eq int_Y)
  1322     by (rule product_integral_setprod) (auto intro: \<open>finite I\<close> simp: integrable_distr_eq int_Y)
  1323   also have "\<dots> = (\<Prod>i\<in>I. \<integral>\<omega>. X i \<omega> \<partial>M)"
  1323   also have "\<dots> = (\<Prod>i\<in>I. \<integral>\<omega>. X i \<omega> \<partial>M)"
  1324     by (intro setprod.cong integral_cong)
  1324     by (intro setprod.cong integral_cong)
  1325        (auto simp: integral_distr Y_def rv_X)
  1325        (auto simp: integral_distr Y_def rv_X)
  1326   finally show ?eq .
  1326   finally show ?eq .
  1327 
  1327 
  1328   have "integrable (distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x)) (\<lambda>\<omega>. (\<Prod>i\<in>I. \<omega> i))"
  1328   have "integrable (distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x)) (\<lambda>\<omega>. (\<Prod>i\<in>I. \<omega> i))"
  1329     unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF `I \<noteq> {}` rv_Y indep_Y]
  1329     unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF \<open>I \<noteq> {}\<close> rv_Y indep_Y]
  1330     by (intro product_integrable_setprod[OF `finite I`])
  1330     by (intro product_integrable_setprod[OF \<open>finite I\<close>])
  1331        (simp add: integrable_distr_eq int_Y)
  1331        (simp add: integrable_distr_eq int_Y)
  1332   then show ?int
  1332   then show ?int
  1333     by (simp add: integrable_distr_eq Y_def)
  1333     by (simp add: integrable_distr_eq Y_def)
  1334 qed (simp_all add: prob_space)
  1334 qed (simp_all add: prob_space)
  1335 
  1335