src/HOL/Library/Fraction_Field.thy
changeset 65417 fc41a5650fb1
parent 65416 f707dbcf11e3
child 65418 c821f1f3d92d
child 65419 457e4fbed731
equal deleted inserted replaced
65416:f707dbcf11e3 65417:fc41a5650fb1
     1 (*  Title:      HOL/Library/Fraction_Field.thy
       
     2     Author:     Amine Chaieb, University of Cambridge
       
     3 *)
       
     4 
       
     5 section\<open>A formalization of the fraction field of any integral domain;
       
     6          generalization of theory Rat from int to any integral domain\<close>
       
     7 
       
     8 theory Fraction_Field
       
     9 imports Main
       
    10 begin
       
    11 
       
    12 subsection \<open>General fractions construction\<close>
       
    13 
       
    14 subsubsection \<open>Construction of the type of fractions\<close>
       
    15 
       
    16 context idom begin
       
    17 
       
    18 definition fractrel :: "'a \<times> 'a \<Rightarrow> 'a * 'a \<Rightarrow> bool" where
       
    19   "fractrel = (\<lambda>x y. snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)"
       
    20 
       
    21 lemma fractrel_iff [simp]:
       
    22   "fractrel x y \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
       
    23   by (simp add: fractrel_def)
       
    24 
       
    25 lemma symp_fractrel: "symp fractrel"
       
    26   by (simp add: symp_def)
       
    27 
       
    28 lemma transp_fractrel: "transp fractrel"
       
    29 proof (rule transpI, unfold split_paired_all)
       
    30   fix a b a' b' a'' b'' :: 'a
       
    31   assume A: "fractrel (a, b) (a', b')"
       
    32   assume B: "fractrel (a', b') (a'', b'')"
       
    33   have "b' * (a * b'') = b'' * (a * b')" by (simp add: ac_simps)
       
    34   also from A have "a * b' = a' * b" by auto
       
    35   also have "b'' * (a' * b) = b * (a' * b'')" by (simp add: ac_simps)
       
    36   also from B have "a' * b'' = a'' * b'" by auto
       
    37   also have "b * (a'' * b') = b' * (a'' * b)" by (simp add: ac_simps)
       
    38   finally have "b' * (a * b'') = b' * (a'' * b)" .
       
    39   moreover from B have "b' \<noteq> 0" by auto
       
    40   ultimately have "a * b'' = a'' * b" by simp
       
    41   with A B show "fractrel (a, b) (a'', b'')" by auto
       
    42 qed
       
    43 
       
    44 lemma part_equivp_fractrel: "part_equivp fractrel"
       
    45 using _ symp_fractrel transp_fractrel
       
    46 by(rule part_equivpI)(rule exI[where x="(0, 1)"]; simp)
       
    47 
       
    48 end
       
    49 
       
    50 quotient_type (overloaded) 'a fract = "'a :: idom \<times> 'a" / partial: "fractrel"
       
    51 by(rule part_equivp_fractrel)
       
    52 
       
    53 subsubsection \<open>Representation and basic operations\<close>
       
    54 
       
    55 lift_definition Fract :: "'a :: idom \<Rightarrow> 'a \<Rightarrow> 'a fract"
       
    56   is "\<lambda>a b. if b = 0 then (0, 1) else (a, b)"
       
    57   by simp
       
    58 
       
    59 lemma Fract_cases [cases type: fract]:
       
    60   obtains (Fract) a b where "q = Fract a b" "b \<noteq> 0"
       
    61 by transfer simp
       
    62 
       
    63 lemma Fract_induct [case_names Fract, induct type: fract]:
       
    64   "(\<And>a b. b \<noteq> 0 \<Longrightarrow> P (Fract a b)) \<Longrightarrow> P q"
       
    65   by (cases q) simp
       
    66 
       
    67 lemma eq_fract:
       
    68   shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
       
    69     and "\<And>a. Fract a 0 = Fract 0 1"
       
    70     and "\<And>a c. Fract 0 a = Fract 0 c"
       
    71 by(transfer; simp)+
       
    72 
       
    73 instantiation fract :: (idom) comm_ring_1
       
    74 begin
       
    75 
       
    76 lift_definition zero_fract :: "'a fract" is "(0, 1)" by simp
       
    77 
       
    78 lemma Zero_fract_def: "0 = Fract 0 1"
       
    79 by transfer simp
       
    80 
       
    81 lift_definition one_fract :: "'a fract" is "(1, 1)" by simp
       
    82 
       
    83 lemma One_fract_def: "1 = Fract 1 1"
       
    84 by transfer simp
       
    85 
       
    86 lift_definition plus_fract :: "'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract"
       
    87   is "\<lambda>q r. (fst q * snd r + fst r * snd q, snd q * snd r)"
       
    88 by(auto simp add: algebra_simps)
       
    89 
       
    90 lemma add_fract [simp]:
       
    91   "\<lbrakk> b \<noteq> 0; d \<noteq> 0 \<rbrakk> \<Longrightarrow> Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
       
    92 by transfer simp
       
    93 
       
    94 lift_definition uminus_fract :: "'a fract \<Rightarrow> 'a fract"
       
    95   is "\<lambda>x. (- fst x, snd x)"
       
    96 by simp
       
    97 
       
    98 lemma minus_fract [simp]:
       
    99   fixes a b :: "'a::idom"
       
   100   shows "- Fract a b = Fract (- a) b"
       
   101 by transfer simp
       
   102 
       
   103 lemma minus_fract_cancel [simp]: "Fract (- a) (- b) = Fract a b"
       
   104   by (cases "b = 0") (simp_all add: eq_fract)
       
   105 
       
   106 definition diff_fract_def: "q - r = q + - (r::'a fract)"
       
   107 
       
   108 lemma diff_fract [simp]:
       
   109   "\<lbrakk> b \<noteq> 0; d \<noteq> 0 \<rbrakk> \<Longrightarrow> Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
       
   110   by (simp add: diff_fract_def)
       
   111 
       
   112 lift_definition times_fract :: "'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract"
       
   113   is "\<lambda>q r. (fst q * fst r, snd q * snd r)"
       
   114 by(simp add: algebra_simps)
       
   115 
       
   116 lemma mult_fract [simp]: "Fract (a::'a::idom) b * Fract c d = Fract (a * c) (b * d)"
       
   117 by transfer simp
       
   118 
       
   119 lemma mult_fract_cancel:
       
   120   "c \<noteq> 0 \<Longrightarrow> Fract (c * a) (c * b) = Fract a b"
       
   121 by transfer simp
       
   122 
       
   123 instance
       
   124 proof
       
   125   fix q r s :: "'a fract"
       
   126   show "(q * r) * s = q * (r * s)"
       
   127     by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps)
       
   128   show "q * r = r * q"
       
   129     by (cases q, cases r) (simp add: eq_fract algebra_simps)
       
   130   show "1 * q = q"
       
   131     by (cases q) (simp add: One_fract_def eq_fract)
       
   132   show "(q + r) + s = q + (r + s)"
       
   133     by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps)
       
   134   show "q + r = r + q"
       
   135     by (cases q, cases r) (simp add: eq_fract algebra_simps)
       
   136   show "0 + q = q"
       
   137     by (cases q) (simp add: Zero_fract_def eq_fract)
       
   138   show "- q + q = 0"
       
   139     by (cases q) (simp add: Zero_fract_def eq_fract)
       
   140   show "q - r = q + - r"
       
   141     by (cases q, cases r) (simp add: eq_fract)
       
   142   show "(q + r) * s = q * s + r * s"
       
   143     by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps)
       
   144   show "(0::'a fract) \<noteq> 1"
       
   145     by (simp add: Zero_fract_def One_fract_def eq_fract)
       
   146 qed
       
   147 
       
   148 end
       
   149 
       
   150 lemma of_nat_fract: "of_nat k = Fract (of_nat k) 1"
       
   151   by (induct k) (simp_all add: Zero_fract_def One_fract_def)
       
   152 
       
   153 lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
       
   154   by (rule of_nat_fract [symmetric])
       
   155 
       
   156 lemma fract_collapse:
       
   157   "Fract 0 k = 0"
       
   158   "Fract 1 1 = 1"
       
   159   "Fract k 0 = 0"
       
   160 by(transfer; simp)+
       
   161 
       
   162 lemma fract_expand:
       
   163   "0 = Fract 0 1"
       
   164   "1 = Fract 1 1"
       
   165   by (simp_all add: fract_collapse)
       
   166 
       
   167 lemma Fract_cases_nonzero:
       
   168   obtains (Fract) a b where "q = Fract a b" and "b \<noteq> 0" and "a \<noteq> 0"
       
   169     | (0) "q = 0"
       
   170 proof (cases "q = 0")
       
   171   case True
       
   172   then show thesis using 0 by auto
       
   173 next
       
   174   case False
       
   175   then obtain a b where "q = Fract a b" and "b \<noteq> 0" by (cases q) auto
       
   176   with False have "0 \<noteq> Fract a b" by simp
       
   177   with \<open>b \<noteq> 0\<close> have "a \<noteq> 0" by (simp add: Zero_fract_def eq_fract)
       
   178   with Fract \<open>q = Fract a b\<close> \<open>b \<noteq> 0\<close> show thesis by auto
       
   179 qed
       
   180 
       
   181 
       
   182 subsubsection \<open>The field of rational numbers\<close>
       
   183 
       
   184 context idom
       
   185 begin
       
   186 
       
   187 subclass ring_no_zero_divisors ..
       
   188 
       
   189 end
       
   190 
       
   191 instantiation fract :: (idom) field
       
   192 begin
       
   193 
       
   194 lift_definition inverse_fract :: "'a fract \<Rightarrow> 'a fract"
       
   195   is "\<lambda>x. if fst x = 0 then (0, 1) else (snd x, fst x)"
       
   196 by(auto simp add: algebra_simps)
       
   197 
       
   198 lemma inverse_fract [simp]: "inverse (Fract a b) = Fract (b::'a::idom) a"
       
   199 by transfer simp
       
   200 
       
   201 definition divide_fract_def: "q div r = q * inverse (r:: 'a fract)"
       
   202 
       
   203 lemma divide_fract [simp]: "Fract a b div Fract c d = Fract (a * d) (b * c)"
       
   204   by (simp add: divide_fract_def)
       
   205 
       
   206 instance
       
   207 proof
       
   208   fix q :: "'a fract"
       
   209   assume "q \<noteq> 0"
       
   210   then show "inverse q * q = 1"
       
   211     by (cases q rule: Fract_cases_nonzero)
       
   212       (simp_all add: fract_expand eq_fract mult.commute)
       
   213 next
       
   214   fix q r :: "'a fract"
       
   215   show "q div r = q * inverse r" by (simp add: divide_fract_def)
       
   216 next
       
   217   show "inverse 0 = (0:: 'a fract)"
       
   218     by (simp add: fract_expand) (simp add: fract_collapse)
       
   219 qed
       
   220 
       
   221 end
       
   222 
       
   223 
       
   224 subsubsection \<open>The ordered field of fractions over an ordered idom\<close>
       
   225 
       
   226 instantiation fract :: (linordered_idom) linorder
       
   227 begin
       
   228 
       
   229 lemma less_eq_fract_respect:
       
   230   fixes a b a' b' c d c' d' :: 'a
       
   231   assumes neq: "b \<noteq> 0"  "b' \<noteq> 0"  "d \<noteq> 0"  "d' \<noteq> 0"
       
   232   assumes eq1: "a * b' = a' * b"
       
   233   assumes eq2: "c * d' = c' * d"
       
   234   shows "((a * d) * (b * d) \<le> (c * b) * (b * d)) \<longleftrightarrow> ((a' * d') * (b' * d') \<le> (c' * b') * (b' * d'))"
       
   235 proof -
       
   236   let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
       
   237   {
       
   238     fix a b c d x :: 'a
       
   239     assume x: "x \<noteq> 0"
       
   240     have "?le a b c d = ?le (a * x) (b * x) c d"
       
   241     proof -
       
   242       from x have "0 < x * x"
       
   243         by (auto simp add: zero_less_mult_iff)
       
   244       then have "?le a b c d =
       
   245           ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
       
   246         by (simp add: mult_le_cancel_right)
       
   247       also have "... = ?le (a * x) (b * x) c d"
       
   248         by (simp add: ac_simps)
       
   249       finally show ?thesis .
       
   250     qed
       
   251   } note le_factor = this
       
   252 
       
   253   let ?D = "b * d" and ?D' = "b' * d'"
       
   254   from neq have D: "?D \<noteq> 0" by simp
       
   255   from neq have "?D' \<noteq> 0" by simp
       
   256   then have "?le a b c d = ?le (a * ?D') (b * ?D') c d"
       
   257     by (rule le_factor)
       
   258   also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')"
       
   259     by (simp add: ac_simps)
       
   260   also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
       
   261     by (simp only: eq1 eq2)
       
   262   also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
       
   263     by (simp add: ac_simps)
       
   264   also from D have "... = ?le a' b' c' d'"
       
   265     by (rule le_factor [symmetric])
       
   266   finally show "?le a b c d = ?le a' b' c' d'" .
       
   267 qed
       
   268 
       
   269 lift_definition less_eq_fract :: "'a fract \<Rightarrow> 'a fract \<Rightarrow> bool"
       
   270   is "\<lambda>q r. (fst q * snd r) * (snd q * snd r) \<le> (fst r * snd q) * (snd q * snd r)"
       
   271 by (clarsimp simp add: less_eq_fract_respect)
       
   272 
       
   273 definition less_fract_def: "z < (w::'a fract) \<longleftrightarrow> z \<le> w \<and> \<not> w \<le> z"
       
   274 
       
   275 lemma le_fract [simp]:
       
   276   "\<lbrakk> b \<noteq> 0; d \<noteq> 0 \<rbrakk> \<Longrightarrow> Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
       
   277   by transfer simp
       
   278 
       
   279 lemma less_fract [simp]:
       
   280   "\<lbrakk> b \<noteq> 0; d \<noteq> 0 \<rbrakk> \<Longrightarrow> Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
       
   281   by (simp add: less_fract_def less_le_not_le ac_simps)
       
   282 
       
   283 instance
       
   284 proof
       
   285   fix q r s :: "'a fract"
       
   286   assume "q \<le> r" and "r \<le> s"
       
   287   then show "q \<le> s"
       
   288   proof (induct q, induct r, induct s)
       
   289     fix a b c d e f :: 'a
       
   290     assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
       
   291     assume 1: "Fract a b \<le> Fract c d"
       
   292     assume 2: "Fract c d \<le> Fract e f"
       
   293     show "Fract a b \<le> Fract e f"
       
   294     proof -
       
   295       from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
       
   296         by (auto simp add: zero_less_mult_iff linorder_neq_iff)
       
   297       have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
       
   298       proof -
       
   299         from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
       
   300           by simp
       
   301         with ff show ?thesis by (simp add: mult_le_cancel_right)
       
   302       qed
       
   303       also have "... = (c * f) * (d * f) * (b * b)"
       
   304         by (simp only: ac_simps)
       
   305       also have "... \<le> (e * d) * (d * f) * (b * b)"
       
   306       proof -
       
   307         from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
       
   308           by simp
       
   309         with bb show ?thesis by (simp add: mult_le_cancel_right)
       
   310       qed
       
   311       finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
       
   312         by (simp only: ac_simps)
       
   313       with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
       
   314         by (simp add: mult_le_cancel_right)
       
   315       with neq show ?thesis by simp
       
   316     qed
       
   317   qed
       
   318 next
       
   319   fix q r :: "'a fract"
       
   320   assume "q \<le> r" and "r \<le> q"
       
   321   then show "q = r"
       
   322   proof (induct q, induct r)
       
   323     fix a b c d :: 'a
       
   324     assume neq: "b \<noteq> 0" "d \<noteq> 0"
       
   325     assume 1: "Fract a b \<le> Fract c d"
       
   326     assume 2: "Fract c d \<le> Fract a b"
       
   327     show "Fract a b = Fract c d"
       
   328     proof -
       
   329       from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
       
   330         by simp
       
   331       also have "... \<le> (a * d) * (b * d)"
       
   332       proof -
       
   333         from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
       
   334           by simp
       
   335         then show ?thesis by (simp only: ac_simps)
       
   336       qed
       
   337       finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
       
   338       moreover from neq have "b * d \<noteq> 0" by simp
       
   339       ultimately have "a * d = c * b" by simp
       
   340       with neq show ?thesis by (simp add: eq_fract)
       
   341     qed
       
   342   qed
       
   343 next
       
   344   fix q r :: "'a fract"
       
   345   show "q \<le> q"
       
   346     by (induct q) simp
       
   347   show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
       
   348     by (simp only: less_fract_def)
       
   349   show "q \<le> r \<or> r \<le> q"
       
   350     by (induct q, induct r)
       
   351        (simp add: mult.commute, rule linorder_linear)
       
   352 qed
       
   353 
       
   354 end
       
   355 
       
   356 instantiation fract :: (linordered_idom) linordered_field
       
   357 begin
       
   358 
       
   359 definition abs_fract_def2:
       
   360   "\<bar>q\<bar> = (if q < 0 then -q else (q::'a fract))"
       
   361 
       
   362 definition sgn_fract_def:
       
   363   "sgn (q::'a fract) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
       
   364 
       
   365 theorem abs_fract [simp]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
       
   366   unfolding abs_fract_def2 not_le [symmetric]
       
   367   by transfer (auto simp add: zero_less_mult_iff le_less)
       
   368 
       
   369 instance proof
       
   370   fix q r s :: "'a fract"
       
   371   assume "q \<le> r"
       
   372   then show "s + q \<le> s + r"
       
   373   proof (induct q, induct r, induct s)
       
   374     fix a b c d e f :: 'a
       
   375     assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
       
   376     assume le: "Fract a b \<le> Fract c d"
       
   377     show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
       
   378     proof -
       
   379       let ?F = "f * f" from neq have F: "0 < ?F"
       
   380         by (auto simp add: zero_less_mult_iff)
       
   381       from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
       
   382         by simp
       
   383       with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
       
   384         by (simp add: mult_le_cancel_right)
       
   385       with neq show ?thesis by (simp add: field_simps)
       
   386     qed
       
   387   qed
       
   388 next
       
   389   fix q r s :: "'a fract"
       
   390   assume "q < r" and "0 < s"
       
   391   then show "s * q < s * r"
       
   392   proof (induct q, induct r, induct s)
       
   393     fix a b c d e f :: 'a
       
   394     assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
       
   395     assume le: "Fract a b < Fract c d"
       
   396     assume gt: "0 < Fract e f"
       
   397     show "Fract e f * Fract a b < Fract e f * Fract c d"
       
   398     proof -
       
   399       let ?E = "e * f" and ?F = "f * f"
       
   400       from neq gt have "0 < ?E"
       
   401         by (auto simp add: Zero_fract_def order_less_le eq_fract)
       
   402       moreover from neq have "0 < ?F"
       
   403         by (auto simp add: zero_less_mult_iff)
       
   404       moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
       
   405         by simp
       
   406       ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
       
   407         by (simp add: mult_less_cancel_right)
       
   408       with neq show ?thesis
       
   409         by (simp add: ac_simps)
       
   410     qed
       
   411   qed
       
   412 qed (fact sgn_fract_def abs_fract_def2)+
       
   413 
       
   414 end
       
   415 
       
   416 instantiation fract :: (linordered_idom) distrib_lattice
       
   417 begin
       
   418 
       
   419 definition inf_fract_def:
       
   420   "(inf :: 'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract) = min"
       
   421 
       
   422 definition sup_fract_def:
       
   423   "(sup :: 'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract) = max"
       
   424 
       
   425 instance
       
   426   by standard (simp_all add: inf_fract_def sup_fract_def max_min_distrib2)
       
   427   
       
   428 end
       
   429 
       
   430 lemma fract_induct_pos [case_names Fract]:
       
   431   fixes P :: "'a::linordered_idom fract \<Rightarrow> bool"
       
   432   assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
       
   433   shows "P q"
       
   434 proof (cases q)
       
   435   case (Fract a b)
       
   436   {
       
   437     fix a b :: 'a
       
   438     assume b: "b < 0"
       
   439     have "P (Fract a b)"
       
   440     proof -
       
   441       from b have "0 < - b" by simp
       
   442       then have "P (Fract (- a) (- b))"
       
   443         by (rule step)
       
   444       then show "P (Fract a b)"
       
   445         by (simp add: order_less_imp_not_eq [OF b])
       
   446     qed
       
   447   }
       
   448   with Fract show "P q"
       
   449     by (auto simp add: linorder_neq_iff step)
       
   450 qed
       
   451 
       
   452 lemma zero_less_Fract_iff: "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
       
   453   by (auto simp add: Zero_fract_def zero_less_mult_iff)
       
   454 
       
   455 lemma Fract_less_zero_iff: "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
       
   456   by (auto simp add: Zero_fract_def mult_less_0_iff)
       
   457 
       
   458 lemma zero_le_Fract_iff: "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
       
   459   by (auto simp add: Zero_fract_def zero_le_mult_iff)
       
   460 
       
   461 lemma Fract_le_zero_iff: "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
       
   462   by (auto simp add: Zero_fract_def mult_le_0_iff)
       
   463 
       
   464 lemma one_less_Fract_iff: "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
       
   465   by (auto simp add: One_fract_def mult_less_cancel_right_disj)
       
   466 
       
   467 lemma Fract_less_one_iff: "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
       
   468   by (auto simp add: One_fract_def mult_less_cancel_right_disj)
       
   469 
       
   470 lemma one_le_Fract_iff: "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
       
   471   by (auto simp add: One_fract_def mult_le_cancel_right)
       
   472 
       
   473 lemma Fract_le_one_iff: "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
       
   474   by (auto simp add: One_fract_def mult_le_cancel_right)
       
   475 
       
   476 end