src/HOL/Real/HahnBanach/FunctionNorm.thy
changeset 7808 fd019ac3485f
parent 7656 2f18c0ffc348
child 7917 5e5b9813cce7
equal deleted inserted replaced
7807:6a102f74ad0a 7808:fd019ac3485f
     1 (*  Title:      HOL/Real/HahnBanach/FunctionNorm.thy
     1 (*  Title:      HOL/Real/HahnBanach/FunctionNorm.thy
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Gertrud Bauer, TU Munich
     3     Author:     Gertrud Bauer, TU Munich
     4 *)
     4 *)
     5 
     5 
       
     6 header {* The norm of a function *};
       
     7 
     6 theory FunctionNorm = NormedSpace + FunctionOrder:;
     8 theory FunctionNorm = NormedSpace + FunctionOrder:;
     7 
     9 
     8 
    10 
     9 constdefs
    11 constdefs
    10   is_continous :: "['a set, 'a => real, 'a => real] => bool" 
    12   is_continous :: "['a set, 'a => real, 'a => real] => bool" 
    11   "is_continous V norm f == (is_linearform V f
    13   "is_continous V norm f == 
    12                            & (EX c. ALL x:V. rabs (f x) <= c * norm x))";
    14     (is_linearform V f & (EX c. ALL x:V. rabs (f x) <= c * norm x))";
    13 
    15 
    14 lemma lipschitz_continousI [intro]: 
    16 lemma lipschitz_continousI [intro]: 
    15   "[| is_linearform V f; !! x. x:V ==> rabs (f x) <= c * norm x |] 
    17   "[| is_linearform V f; !! x. x:V ==> rabs (f x) <= c * norm x |] 
    16   ==> is_continous V norm f";
    18   ==> is_continous V norm f";
    17 proof (unfold is_continous_def, intro exI conjI ballI);
    19 proof (unfold is_continous_def, intro exI conjI ballI);
    18   assume r: "!! x. x:V ==> rabs (f x) <= c * norm x"; 
    20   assume r: "!! x. x:V ==> rabs (f x) <= c * norm x"; 
    19   fix x; assume "x:V"; show "rabs (f x) <= c * norm x"; by (rule r);
    21   fix x; assume "x:V"; show "rabs (f x) <= c * norm x"; by (rule r);
    20 qed;
    22 qed;
    21   
    23   
    22 lemma continous_linearform [intro!!]: "is_continous V norm f ==> is_linearform V f";
    24 lemma continous_linearform [intro!!]: 
       
    25   "is_continous V norm f ==> is_linearform V f";
    23   by (unfold is_continous_def) force;
    26   by (unfold is_continous_def) force;
    24 
    27 
    25 lemma continous_bounded [intro!!]:
    28 lemma continous_bounded [intro!!]:
    26   "is_continous V norm f ==> EX c. ALL x:V. rabs (f x) <= c * norm x";
    29   "is_continous V norm f ==> EX c. ALL x:V. rabs (f x) <= c * norm x";
    27   by (unfold is_continous_def) force;
    30   by (unfold is_continous_def) force;
    28 
    31 
    29 constdefs
    32 constdefs
    30   B:: "[ 'a set, 'a => real, 'a => real ] => real set"
    33   B:: "[ 'a set, 'a => real, 'a => real ] => real set"
    31   "B V norm f == {z. z = 0r | (EX x:V. x ~= <0> & z = rabs (f x) * rinv (norm (x)))}";
    34   "B V norm f == 
       
    35     {z. z = 0r | (EX x:V. x ~= <0> & z = rabs (f x) * rinv (norm (x)))}";
    32 
    36 
    33 constdefs 
    37 constdefs 
    34   function_norm :: " ['a set, 'a => real, 'a => real] => real"
    38   function_norm :: " ['a set, 'a => real, 'a => real] => real"
    35   "function_norm V norm f == 
    39   "function_norm V norm f == 
    36      Sup UNIV (B V norm f)";
    40      Sup UNIV (B V norm f)";
    44   by (unfold B_def, force);
    48   by (unfold B_def, force);
    45 
    49 
    46 lemma ex_fnorm [intro!!]: 
    50 lemma ex_fnorm [intro!!]: 
    47   "[| is_normed_vectorspace V norm; is_continous V norm f|]
    51   "[| is_normed_vectorspace V norm; is_continous V norm f|]
    48      ==> is_function_norm V norm f (function_norm V norm f)"; 
    52      ==> is_function_norm V norm f (function_norm V norm f)"; 
    49 proof (unfold function_norm_def is_function_norm_def is_continous_def Sup_def, elim conjE, 
    53 proof (unfold function_norm_def is_function_norm_def is_continous_def 
    50     rule selectI2EX);
    54        Sup_def, elim conjE, rule selectI2EX);
    51   assume "is_normed_vectorspace V norm";
    55   assume "is_normed_vectorspace V norm";
    52   assume "is_linearform V f" and e: "EX c. ALL x:V. rabs (f x) <= c * norm x";
    56   assume "is_linearform V f" 
       
    57   and e: "EX c. ALL x:V. rabs (f x) <= c * norm x";
    53   show  "EX a. is_Sup UNIV (B V norm f) a"; 
    58   show  "EX a. is_Sup UNIV (B V norm f) a"; 
    54   proof (unfold is_Sup_def, rule reals_complete);
    59   proof (unfold is_Sup_def, rule reals_complete);
    55     show "EX X. X : B V norm f"; 
    60     show "EX X. X : B V norm f"; 
    56     proof (intro exI);
    61     proof (intro exI);
    57       show "0r : (B V norm f)"; by (unfold B_def, force);
    62       show "0r : (B V norm f)"; by (unfold B_def, force);
    74           proof (rule real_less_imp_le);
    79           proof (rule real_less_imp_le);
    75             show "0r < rinv (norm x)";
    80             show "0r < rinv (norm x)";
    76             proof (rule real_rinv_gt_zero);
    81             proof (rule real_rinv_gt_zero);
    77               show "0r < norm x"; ..;
    82               show "0r < norm x"; ..;
    78             qed;
    83             qed;
    79           qed;
    84           qed;  (*** or:
    80      (*** or:  by (rule real_less_imp_le, rule real_rinv_gt_zero, rule normed_vs_norm_gt_zero); ***)
    85           by (rule real_less_imp_le, rule real_rinv_gt_zero, 
    81         qed;
    86               rule normed_vs_norm_gt_zero); ***)
    82         also; have "... = c * (norm x * rinv (norm x))"; by (rule real_mult_assoc);
    87         qed;
       
    88         also; have "... = c * (norm x * rinv (norm x))"; 
       
    89           by (rule real_mult_assoc);
    83         also; have "(norm x * rinv (norm x)) = 1r"; 
    90         also; have "(norm x * rinv (norm x)) = 1r"; 
    84         proof (rule real_mult_inv_right);
    91         proof (rule real_mult_inv_right);
    85           show "norm x ~= 0r"; 
    92           show "norm x ~= 0r"; 
    86           proof (rule not_sym);
    93           proof (rule not_sym);
    87             show "0r ~= norm x"; 
    94             show "0r ~= norm x"; 
    88             proof (rule lt_imp_not_eq);
    95             proof (rule lt_imp_not_eq);
    89               show "0r < norm x"; ..;
    96               show "0r < norm x"; ..;
    90             qed;
    97             qed;
    91           qed;
    98           qed; (*** or:  
    92      (*** or:  by (rule not_sym, rule lt_imp_not_eq, rule normed_vs_norm_gt_zero); ***)
    99           by (rule not_sym, rule lt_imp_not_eq, 
       
   100               rule normed_vs_norm_gt_zero); ***)
    93         qed;
   101         qed;
    94         also; have "c * ... = c"; by (simp!);
   102         also; have "c * ... = c"; by (simp!);
    95         also; have "... <= b"; by (simp! add: le_max1);
   103         also; have "... <= b"; by (simp! add: le_max1);
    96 	finally; show "y <= b"; .;
   104 	finally; show "y <= b"; .;
    97       next; 
   105       next; 
    99       qed simp;
   107       qed simp;
   100     qed;
   108     qed;
   101   qed;
   109   qed;
   102 qed;
   110 qed;
   103 
   111 
   104 lemma fnorm_ge_zero [intro!!]: "[| is_continous V norm f; is_normed_vectorspace V norm|]
   112 lemma fnorm_ge_zero [intro!!]: 
       
   113   "[| is_continous V norm f; is_normed_vectorspace V norm|]
   105    ==> 0r <= function_norm V norm f";
   114    ==> 0r <= function_norm V norm f";
   106 proof -;
   115 proof -;
   107   assume c: "is_continous V norm f" and n: "is_normed_vectorspace V norm";
   116   assume c: "is_continous V norm f" and n: "is_normed_vectorspace V norm";
   108   have "is_function_norm V norm f (function_norm V norm f)"; ..;
   117   have "is_function_norm V norm f (function_norm V norm f)"; ..;
   109   hence s: "is_Sup UNIV (B V norm f) (function_norm V norm f)"; 
   118   hence s: "is_Sup UNIV (B V norm f) (function_norm V norm f)"; 
   124             show "0r < norm x"; ..;
   133             show "0r < norm x"; ..;
   125           qed;
   134           qed;
   126         qed;
   135         qed;
   127       qed;
   136       qed;
   128     qed (simp!);
   137     qed (simp!);
   129     from ex_fnorm [OF n c]; show "is_Sup UNIV (B V norm f) (Sup UNIV (B V norm f))"; 
   138     from ex_fnorm [OF n c]; 
       
   139     show "is_Sup UNIV (B V norm f) (Sup UNIV (B V norm f))"; 
   130       by (simp! add: is_function_norm_def function_norm_def); 
   140       by (simp! add: is_function_norm_def function_norm_def); 
   131     show "0r : B V norm f"; by (rule B_not_empty);
   141     show "0r : B V norm f"; by (rule B_not_empty);
   132   qed;
   142   qed;
   133 qed;
   143 qed;
   134   
   144   
   135 
       
   136 lemma norm_fx_le_norm_f_norm_x: 
   145 lemma norm_fx_le_norm_f_norm_x: 
   137   "[| is_normed_vectorspace V norm; x:V; is_continous V norm f |] 
   146   "[| is_normed_vectorspace V norm; x:V; is_continous V norm f |] 
   138     ==> rabs (f x) <= (function_norm V norm f) * norm x"; 
   147     ==> rabs (f x) <= (function_norm V norm f) * norm x"; 
   139 proof -; 
   148 proof -; 
   140   assume "is_normed_vectorspace V norm" "x:V" and c: "is_continous V norm f";
   149   assume "is_normed_vectorspace V norm" "x:V" and c: "is_continous V norm f";
   182       finally; show "rabs (f x) <= function_norm V norm f * norm x"; .;
   191       finally; show "rabs (f x) <= function_norm V norm f * norm x"; .;
   183     qed;
   192     qed;
   184   qed;
   193   qed;
   185 qed;
   194 qed;
   186 
   195 
   187 
       
   188 
       
   189 
       
   190 lemma fnorm_le_ub: 
   196 lemma fnorm_le_ub: 
   191   "[| is_normed_vectorspace V norm; is_continous V norm f;
   197   "[| is_normed_vectorspace V norm; is_continous V norm f;
   192      ALL x:V. rabs (f x) <= c * norm x; 0r <= c |]
   198      ALL x:V. rabs (f x) <= c * norm x; 0r <= c |]
   193   ==> function_norm V norm f <= c";
   199   ==> function_norm V norm f <= c";
   194 proof (unfold function_norm_def);
   200 proof (unfold function_norm_def);
   196   assume c: "is_continous V norm f";
   202   assume c: "is_continous V norm f";
   197   assume fb: "ALL x:V. rabs (f x) <= c * norm x"
   203   assume fb: "ALL x:V. rabs (f x) <= c * norm x"
   198          and "0r <= c";
   204          and "0r <= c";
   199   show "Sup UNIV (B V norm f) <= c"; 
   205   show "Sup UNIV (B V norm f) <= c"; 
   200   proof (rule sup_le_ub);
   206   proof (rule sup_le_ub);
   201     from ex_fnorm [OF _ c]; show "is_Sup UNIV (B V norm f) (Sup UNIV (B V norm f))"; 
   207     from ex_fnorm [OF _ c]; 
       
   208     show "is_Sup UNIV (B V norm f) (Sup UNIV (B V norm f))"; 
   202       by (simp! add: is_function_norm_def function_norm_def); 
   209       by (simp! add: is_function_norm_def function_norm_def); 
   203     show "isUb UNIV (B V norm f) c";  
   210     show "isUb UNIV (B V norm f) c";  
   204     proof (intro isUbI setleI ballI);
   211     proof (intro isUbI setleI ballI);
   205       fix y; assume "y: B V norm f";
   212       fix y; assume "y: B V norm f";
   206       thus le: "y <= c";
   213       thus le: "y <= c";
   215           by (simp! add: order_less_imp_not_eq);
   222           by (simp! add: order_less_imp_not_eq);
   216         qed;
   223         qed;
   217             
   224             
   218 	from lt; have "0r < rinv (norm x)";
   225 	from lt; have "0r < rinv (norm x)";
   219 	  by (simp! add: real_rinv_gt_zero);
   226 	  by (simp! add: real_rinv_gt_zero);
   220 	then; have inv_leq: "0r <= rinv (norm x)"; by (rule real_less_imp_le);
   227 	then; have inv_leq: "0r <= rinv (norm x)";
       
   228           by (rule real_less_imp_le);
   221 
   229 
   222 	from Px; have "y = rabs (f x) * rinv (norm x)"; ..;
   230 	from Px; have "y = rabs (f x) * rinv (norm x)"; ..;
   223 	also; from inv_leq; have "... <= c * norm x * rinv (norm x)";
   231 	also; from inv_leq; have "... <= c * norm x * rinv (norm x)";
   224 	  proof (rule real_mult_le_le_mono2);
   232 	  proof (rule real_mult_le_le_mono2);
   225 	    from fb x; show "rabs (f x) <= c * norm x"; ..;
   233 	    from fb x; show "rabs (f x) <= c * norm x"; ..;
   233       qed;
   241       qed;
   234     qed force;
   242     qed force;
   235   qed;
   243   qed;
   236 qed;
   244 qed;
   237 
   245 
   238 
       
   239 end;
   246 end;
   240