src/HOL/Analysis/Binary_Product_Measure.thy
changeset 68833 fde093888c16
parent 67693 4fa9d5ef95bc
child 69260 0a9688695a1b
equal deleted inserted replaced
68824:7414ce0256e1 68833:fde093888c16
     1 (*  Title:      HOL/Analysis/Binary_Product_Measure.thy
     1 (*  Title:      HOL/Analysis/Binary_Product_Measure.thy
     2     Author:     Johannes Hölzl, TU München
     2     Author:     Johannes Hölzl, TU München
     3 *)
     3 *)
     4 
     4 
     5 section \<open>Binary product measures\<close>
     5 section%important \<open>Binary product measures\<close>
     6 
     6 
     7 theory Binary_Product_Measure
     7 theory Binary_Product_Measure
     8 imports Nonnegative_Lebesgue_Integration
     8 imports Nonnegative_Lebesgue_Integration
     9 begin
     9 begin
    10 
    10 
    11 lemma Pair_vimage_times[simp]: "Pair x -` (A \<times> B) = (if x \<in> A then B else {})"
    11 lemma%unimportant Pair_vimage_times[simp]: "Pair x -` (A \<times> B) = (if x \<in> A then B else {})"
    12   by auto
    12   by auto
    13 
    13 
    14 lemma rev_Pair_vimage_times[simp]: "(\<lambda>x. (x, y)) -` (A \<times> B) = (if y \<in> B then A else {})"
    14 lemma%unimportant rev_Pair_vimage_times[simp]: "(\<lambda>x. (x, y)) -` (A \<times> B) = (if y \<in> B then A else {})"
    15   by auto
    15   by auto
    16 
    16 
    17 subsection "Binary products"
    17 subsection%important "Binary products"
    18 
    18 
    19 definition pair_measure (infixr "\<Otimes>\<^sub>M" 80) where
    19 definition%important pair_measure (infixr "\<Otimes>\<^sub>M" 80) where
    20   "A \<Otimes>\<^sub>M B = measure_of (space A \<times> space B)
    20   "A \<Otimes>\<^sub>M B = measure_of (space A \<times> space B)
    21       {a \<times> b | a b. a \<in> sets A \<and> b \<in> sets B}
    21       {a \<times> b | a b. a \<in> sets A \<and> b \<in> sets B}
    22       (\<lambda>X. \<integral>\<^sup>+x. (\<integral>\<^sup>+y. indicator X (x,y) \<partial>B) \<partial>A)"
    22       (\<lambda>X. \<integral>\<^sup>+x. (\<integral>\<^sup>+y. indicator X (x,y) \<partial>B) \<partial>A)"
    23 
    23 
    24 lemma pair_measure_closed: "{a \<times> b | a b. a \<in> sets A \<and> b \<in> sets B} \<subseteq> Pow (space A \<times> space B)"
    24 lemma%important pair_measure_closed: "{a \<times> b | a b. a \<in> sets A \<and> b \<in> sets B} \<subseteq> Pow (space A \<times> space B)"
    25   using sets.space_closed[of A] sets.space_closed[of B] by auto
    25   using%unimportant sets.space_closed[of A] sets.space_closed[of B] by auto
    26 
    26 
    27 lemma space_pair_measure:
    27 lemma%important space_pair_measure:
    28   "space (A \<Otimes>\<^sub>M B) = space A \<times> space B"
    28   "space (A \<Otimes>\<^sub>M B) = space A \<times> space B"
    29   unfolding pair_measure_def using pair_measure_closed[of A B]
    29   unfolding pair_measure_def using pair_measure_closed[of A B]
    30   by (rule space_measure_of)
    30   by%unimportant (rule space_measure_of)
    31 
    31 
    32 lemma SIGMA_Collect_eq: "(SIGMA x:space M. {y\<in>space N. P x y}) = {x\<in>space (M \<Otimes>\<^sub>M N). P (fst x) (snd x)}"
    32 lemma%unimportant SIGMA_Collect_eq: "(SIGMA x:space M. {y\<in>space N. P x y}) = {x\<in>space (M \<Otimes>\<^sub>M N). P (fst x) (snd x)}"
    33   by (auto simp: space_pair_measure)
    33   by (auto simp: space_pair_measure)
    34 
    34 
    35 lemma sets_pair_measure:
    35 lemma%unimportant sets_pair_measure:
    36   "sets (A \<Otimes>\<^sub>M B) = sigma_sets (space A \<times> space B) {a \<times> b | a b. a \<in> sets A \<and> b \<in> sets B}"
    36   "sets (A \<Otimes>\<^sub>M B) = sigma_sets (space A \<times> space B) {a \<times> b | a b. a \<in> sets A \<and> b \<in> sets B}"
    37   unfolding pair_measure_def using pair_measure_closed[of A B]
    37   unfolding pair_measure_def using pair_measure_closed[of A B]
    38   by (rule sets_measure_of)
    38   by (rule sets_measure_of)
    39 
    39 
    40 lemma sets_pair_measure_cong[measurable_cong, cong]:
    40 lemma%unimportant sets_pair_measure_cong[measurable_cong, cong]:
    41   "sets M1 = sets M1' \<Longrightarrow> sets M2 = sets M2' \<Longrightarrow> sets (M1 \<Otimes>\<^sub>M M2) = sets (M1' \<Otimes>\<^sub>M M2')"
    41   "sets M1 = sets M1' \<Longrightarrow> sets M2 = sets M2' \<Longrightarrow> sets (M1 \<Otimes>\<^sub>M M2) = sets (M1' \<Otimes>\<^sub>M M2')"
    42   unfolding sets_pair_measure by (simp cong: sets_eq_imp_space_eq)
    42   unfolding sets_pair_measure by (simp cong: sets_eq_imp_space_eq)
    43 
    43 
    44 lemma pair_measureI[intro, simp, measurable]:
    44 lemma%unimportant pair_measureI[intro, simp, measurable]:
    45   "x \<in> sets A \<Longrightarrow> y \<in> sets B \<Longrightarrow> x \<times> y \<in> sets (A \<Otimes>\<^sub>M B)"
    45   "x \<in> sets A \<Longrightarrow> y \<in> sets B \<Longrightarrow> x \<times> y \<in> sets (A \<Otimes>\<^sub>M B)"
    46   by (auto simp: sets_pair_measure)
    46   by (auto simp: sets_pair_measure)
    47 
    47 
    48 lemma sets_Pair: "{x} \<in> sets M1 \<Longrightarrow> {y} \<in> sets M2 \<Longrightarrow> {(x, y)} \<in> sets (M1 \<Otimes>\<^sub>M M2)"
    48 lemma%unimportant sets_Pair: "{x} \<in> sets M1 \<Longrightarrow> {y} \<in> sets M2 \<Longrightarrow> {(x, y)} \<in> sets (M1 \<Otimes>\<^sub>M M2)"
    49   using pair_measureI[of "{x}" M1 "{y}" M2] by simp
    49   using pair_measureI[of "{x}" M1 "{y}" M2] by simp
    50 
    50 
    51 lemma measurable_pair_measureI:
    51 lemma%unimportant measurable_pair_measureI:
    52   assumes 1: "f \<in> space M \<rightarrow> space M1 \<times> space M2"
    52   assumes 1: "f \<in> space M \<rightarrow> space M1 \<times> space M2"
    53   assumes 2: "\<And>A B. A \<in> sets M1 \<Longrightarrow> B \<in> sets M2 \<Longrightarrow> f -` (A \<times> B) \<inter> space M \<in> sets M"
    53   assumes 2: "\<And>A B. A \<in> sets M1 \<Longrightarrow> B \<in> sets M2 \<Longrightarrow> f -` (A \<times> B) \<inter> space M \<in> sets M"
    54   shows "f \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
    54   shows "f \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
    55   unfolding pair_measure_def using 1 2
    55   unfolding pair_measure_def using 1 2
    56   by (intro measurable_measure_of) (auto dest: sets.sets_into_space)
    56   by (intro measurable_measure_of) (auto dest: sets.sets_into_space)
    57 
    57 
    58 lemma measurable_split_replace[measurable (raw)]:
    58 lemma%unimportant measurable_split_replace[measurable (raw)]:
    59   "(\<lambda>x. f x (fst (g x)) (snd (g x))) \<in> measurable M N \<Longrightarrow> (\<lambda>x. case_prod (f x) (g x)) \<in> measurable M N"
    59   "(\<lambda>x. f x (fst (g x)) (snd (g x))) \<in> measurable M N \<Longrightarrow> (\<lambda>x. case_prod (f x) (g x)) \<in> measurable M N"
    60   unfolding split_beta' .
    60   unfolding split_beta' .
    61 
    61 
    62 lemma measurable_Pair[measurable (raw)]:
    62 lemma%important measurable_Pair[measurable (raw)]:
    63   assumes f: "f \<in> measurable M M1" and g: "g \<in> measurable M M2"
    63   assumes f: "f \<in> measurable M M1" and g: "g \<in> measurable M M2"
    64   shows "(\<lambda>x. (f x, g x)) \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
    64   shows "(\<lambda>x. (f x, g x)) \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
    65 proof (rule measurable_pair_measureI)
    65 proof%unimportant (rule measurable_pair_measureI)
    66   show "(\<lambda>x. (f x, g x)) \<in> space M \<rightarrow> space M1 \<times> space M2"
    66   show "(\<lambda>x. (f x, g x)) \<in> space M \<rightarrow> space M1 \<times> space M2"
    67     using f g by (auto simp: measurable_def)
    67     using f g by (auto simp: measurable_def)
    68   fix A B assume *: "A \<in> sets M1" "B \<in> sets M2"
    68   fix A B assume *: "A \<in> sets M1" "B \<in> sets M2"
    69   have "(\<lambda>x. (f x, g x)) -` (A \<times> B) \<inter> space M = (f -` A \<inter> space M) \<inter> (g -` B \<inter> space M)"
    69   have "(\<lambda>x. (f x, g x)) -` (A \<times> B) \<inter> space M = (f -` A \<inter> space M) \<inter> (g -` B \<inter> space M)"
    70     by auto
    70     by auto
    71   also have "\<dots> \<in> sets M"
    71   also have "\<dots> \<in> sets M"
    72     by (rule sets.Int) (auto intro!: measurable_sets * f g)
    72     by (rule sets.Int) (auto intro!: measurable_sets * f g)
    73   finally show "(\<lambda>x. (f x, g x)) -` (A \<times> B) \<inter> space M \<in> sets M" .
    73   finally show "(\<lambda>x. (f x, g x)) -` (A \<times> B) \<inter> space M \<in> sets M" .
    74 qed
    74 qed
    75 
    75 
    76 lemma measurable_fst[intro!, simp, measurable]: "fst \<in> measurable (M1 \<Otimes>\<^sub>M M2) M1"
    76 lemma%unimportant measurable_fst[intro!, simp, measurable]: "fst \<in> measurable (M1 \<Otimes>\<^sub>M M2) M1"
    77   by (auto simp: fst_vimage_eq_Times space_pair_measure sets.sets_into_space times_Int_times
    77   by (auto simp: fst_vimage_eq_Times space_pair_measure sets.sets_into_space times_Int_times
    78     measurable_def)
    78     measurable_def)
    79 
    79 
    80 lemma measurable_snd[intro!, simp, measurable]: "snd \<in> measurable (M1 \<Otimes>\<^sub>M M2) M2"
    80 lemma%unimportant measurable_snd[intro!, simp, measurable]: "snd \<in> measurable (M1 \<Otimes>\<^sub>M M2) M2"
    81   by (auto simp: snd_vimage_eq_Times space_pair_measure sets.sets_into_space times_Int_times
    81   by (auto simp: snd_vimage_eq_Times space_pair_measure sets.sets_into_space times_Int_times
    82     measurable_def)
    82     measurable_def)
    83 
    83 
    84 lemma measurable_Pair_compose_split[measurable_dest]:
    84 lemma%unimportant measurable_Pair_compose_split[measurable_dest]:
    85   assumes f: "case_prod f \<in> measurable (M1 \<Otimes>\<^sub>M M2) N"
    85   assumes f: "case_prod f \<in> measurable (M1 \<Otimes>\<^sub>M M2) N"
    86   assumes g: "g \<in> measurable M M1" and h: "h \<in> measurable M M2"
    86   assumes g: "g \<in> measurable M M1" and h: "h \<in> measurable M M2"
    87   shows "(\<lambda>x. f (g x) (h x)) \<in> measurable M N"
    87   shows "(\<lambda>x. f (g x) (h x)) \<in> measurable M N"
    88   using measurable_compose[OF measurable_Pair f, OF g h] by simp
    88   using measurable_compose[OF measurable_Pair f, OF g h] by simp
    89 
    89 
    90 lemma measurable_Pair1_compose[measurable_dest]:
    90 lemma%unimportant measurable_Pair1_compose[measurable_dest]:
    91   assumes f: "(\<lambda>x. (f x, g x)) \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
    91   assumes f: "(\<lambda>x. (f x, g x)) \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
    92   assumes [measurable]: "h \<in> measurable N M"
    92   assumes [measurable]: "h \<in> measurable N M"
    93   shows "(\<lambda>x. f (h x)) \<in> measurable N M1"
    93   shows "(\<lambda>x. f (h x)) \<in> measurable N M1"
    94   using measurable_compose[OF f measurable_fst] by simp
    94   using measurable_compose[OF f measurable_fst] by simp
    95 
    95 
    96 lemma measurable_Pair2_compose[measurable_dest]:
    96 lemma%unimportant measurable_Pair2_compose[measurable_dest]:
    97   assumes f: "(\<lambda>x. (f x, g x)) \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
    97   assumes f: "(\<lambda>x. (f x, g x)) \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
    98   assumes [measurable]: "h \<in> measurable N M"
    98   assumes [measurable]: "h \<in> measurable N M"
    99   shows "(\<lambda>x. g (h x)) \<in> measurable N M2"
    99   shows "(\<lambda>x. g (h x)) \<in> measurable N M2"
   100   using measurable_compose[OF f measurable_snd] by simp
   100   using measurable_compose[OF f measurable_snd] by simp
   101 
   101 
   102 lemma measurable_pair:
   102 lemma%unimportant measurable_pair:
   103   assumes "(fst \<circ> f) \<in> measurable M M1" "(snd \<circ> f) \<in> measurable M M2"
   103   assumes "(fst \<circ> f) \<in> measurable M M1" "(snd \<circ> f) \<in> measurable M M2"
   104   shows "f \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
   104   shows "f \<in> measurable M (M1 \<Otimes>\<^sub>M M2)"
   105   using measurable_Pair[OF assms] by simp
   105   using measurable_Pair[OF assms] by simp
   106 
   106 
   107 lemma
   107 lemma%unimportant (*FIX ME needs a name *)
   108   assumes f[measurable]: "f \<in> measurable M (N \<Otimes>\<^sub>M P)"
   108   assumes f[measurable]: "f \<in> measurable M (N \<Otimes>\<^sub>M P)"
   109   shows measurable_fst': "(\<lambda>x. fst (f x)) \<in> measurable M N"
   109   shows measurable_fst': "(\<lambda>x. fst (f x)) \<in> measurable M N"
   110     and measurable_snd': "(\<lambda>x. snd (f x)) \<in> measurable M P"
   110     and measurable_snd': "(\<lambda>x. snd (f x)) \<in> measurable M P"
   111   by simp_all
   111   by simp_all
   112 
   112 
   113 lemma
   113 lemma%unimportant (*FIX ME needs a name *)
   114   assumes f[measurable]: "f \<in> measurable M N"
   114   assumes f[measurable]: "f \<in> measurable M N"
   115   shows measurable_fst'': "(\<lambda>x. f (fst x)) \<in> measurable (M \<Otimes>\<^sub>M P) N"
   115   shows measurable_fst'': "(\<lambda>x. f (fst x)) \<in> measurable (M \<Otimes>\<^sub>M P) N"
   116     and measurable_snd'': "(\<lambda>x. f (snd x)) \<in> measurable (P \<Otimes>\<^sub>M M) N"
   116     and measurable_snd'': "(\<lambda>x. f (snd x)) \<in> measurable (P \<Otimes>\<^sub>M M) N"
   117   by simp_all
   117   by simp_all
   118 
   118 
   119 lemma sets_pair_in_sets:
   119 lemma%unimportant sets_pair_in_sets:
   120   assumes "\<And>a b. a \<in> sets A \<Longrightarrow> b \<in> sets B \<Longrightarrow> a \<times> b \<in> sets N"
   120   assumes "\<And>a b. a \<in> sets A \<Longrightarrow> b \<in> sets B \<Longrightarrow> a \<times> b \<in> sets N"
   121   shows "sets (A \<Otimes>\<^sub>M B) \<subseteq> sets N"
   121   shows "sets (A \<Otimes>\<^sub>M B) \<subseteq> sets N"
   122   unfolding sets_pair_measure
   122   unfolding sets_pair_measure
   123   by (intro sets.sigma_sets_subset') (auto intro!: assms)
   123   by (intro sets.sigma_sets_subset') (auto intro!: assms)
   124 
   124 
   125 lemma sets_pair_eq_sets_fst_snd:
   125 lemma%important  sets_pair_eq_sets_fst_snd:
   126   "sets (A \<Otimes>\<^sub>M B) = sets (Sup {vimage_algebra (space A \<times> space B) fst A, vimage_algebra (space A \<times> space B) snd B})"
   126   "sets (A \<Otimes>\<^sub>M B) = sets (Sup {vimage_algebra (space A \<times> space B) fst A, vimage_algebra (space A \<times> space B) snd B})"
   127     (is "?P = sets (Sup {?fst, ?snd})")
   127     (is "?P = sets (Sup {?fst, ?snd})")
   128 proof -
   128 proof%unimportant -
   129   { fix a b assume ab: "a \<in> sets A" "b \<in> sets B"
   129   { fix a b assume ab: "a \<in> sets A" "b \<in> sets B"
   130     then have "a \<times> b = (fst -` a \<inter> (space A \<times> space B)) \<inter> (snd -` b \<inter> (space A \<times> space B))"
   130     then have "a \<times> b = (fst -` a \<inter> (space A \<times> space B)) \<inter> (snd -` b \<inter> (space A \<times> space B))"
   131       by (auto dest: sets.sets_into_space)
   131       by (auto dest: sets.sets_into_space)
   132     also have "\<dots> \<in> sets (Sup {?fst, ?snd})"
   132     also have "\<dots> \<in> sets (Sup {?fst, ?snd})"
   133       apply (rule sets.Int)
   133       apply (rule sets.Int)
   155     apply (simp add: space_pair_measure)
   155     apply (simp add: space_pair_measure)
   156     apply (auto simp add: space_pair_measure)
   156     apply (auto simp add: space_pair_measure)
   157     done
   157     done
   158 qed
   158 qed
   159 
   159 
   160 lemma measurable_pair_iff:
   160 lemma%unimportant measurable_pair_iff:
   161   "f \<in> measurable M (M1 \<Otimes>\<^sub>M M2) \<longleftrightarrow> (fst \<circ> f) \<in> measurable M M1 \<and> (snd \<circ> f) \<in> measurable M M2"
   161   "f \<in> measurable M (M1 \<Otimes>\<^sub>M M2) \<longleftrightarrow> (fst \<circ> f) \<in> measurable M M1 \<and> (snd \<circ> f) \<in> measurable M M2"
   162   by (auto intro: measurable_pair[of f M M1 M2])
   162   by (auto intro: measurable_pair[of f M M1 M2])
   163 
   163 
   164 lemma measurable_split_conv:
   164 lemma%unimportant  measurable_split_conv:
   165   "(\<lambda>(x, y). f x y) \<in> measurable A B \<longleftrightarrow> (\<lambda>x. f (fst x) (snd x)) \<in> measurable A B"
   165   "(\<lambda>(x, y). f x y) \<in> measurable A B \<longleftrightarrow> (\<lambda>x. f (fst x) (snd x)) \<in> measurable A B"
   166   by (intro arg_cong2[where f="(\<in>)"]) auto
   166   by (intro arg_cong2[where f="(\<in>)"]) auto
   167 
   167 
   168 lemma measurable_pair_swap': "(\<lambda>(x,y). (y, x)) \<in> measurable (M1 \<Otimes>\<^sub>M M2) (M2 \<Otimes>\<^sub>M M1)"
   168 lemma%unimportant measurable_pair_swap': "(\<lambda>(x,y). (y, x)) \<in> measurable (M1 \<Otimes>\<^sub>M M2) (M2 \<Otimes>\<^sub>M M1)"
   169   by (auto intro!: measurable_Pair simp: measurable_split_conv)
   169   by (auto intro!: measurable_Pair simp: measurable_split_conv)
   170 
   170 
   171 lemma measurable_pair_swap:
   171 lemma%unimportant  measurable_pair_swap:
   172   assumes f: "f \<in> measurable (M1 \<Otimes>\<^sub>M M2) M" shows "(\<lambda>(x,y). f (y, x)) \<in> measurable (M2 \<Otimes>\<^sub>M M1) M"
   172   assumes f: "f \<in> measurable (M1 \<Otimes>\<^sub>M M2) M" shows "(\<lambda>(x,y). f (y, x)) \<in> measurable (M2 \<Otimes>\<^sub>M M1) M"
   173   using measurable_comp[OF measurable_Pair f] by (auto simp: measurable_split_conv comp_def)
   173   using measurable_comp[OF measurable_Pair f] by (auto simp: measurable_split_conv comp_def)
   174 
   174 
   175 lemma measurable_pair_swap_iff:
   175 lemma%unimportant measurable_pair_swap_iff:
   176   "f \<in> measurable (M2 \<Otimes>\<^sub>M M1) M \<longleftrightarrow> (\<lambda>(x,y). f (y,x)) \<in> measurable (M1 \<Otimes>\<^sub>M M2) M"
   176   "f \<in> measurable (M2 \<Otimes>\<^sub>M M1) M \<longleftrightarrow> (\<lambda>(x,y). f (y,x)) \<in> measurable (M1 \<Otimes>\<^sub>M M2) M"
   177   by (auto dest: measurable_pair_swap)
   177   by (auto dest: measurable_pair_swap)
   178 
   178 
   179 lemma measurable_Pair1': "x \<in> space M1 \<Longrightarrow> Pair x \<in> measurable M2 (M1 \<Otimes>\<^sub>M M2)"
   179 lemma%unimportant measurable_Pair1': "x \<in> space M1 \<Longrightarrow> Pair x \<in> measurable M2 (M1 \<Otimes>\<^sub>M M2)"
   180   by simp
   180   by simp
   181 
   181 
   182 lemma sets_Pair1[measurable (raw)]:
   182 lemma%unimportant sets_Pair1[measurable (raw)]:
   183   assumes A: "A \<in> sets (M1 \<Otimes>\<^sub>M M2)" shows "Pair x -` A \<in> sets M2"
   183   assumes A: "A \<in> sets (M1 \<Otimes>\<^sub>M M2)" shows "Pair x -` A \<in> sets M2"
   184 proof -
   184 proof -
   185   have "Pair x -` A = (if x \<in> space M1 then Pair x -` A \<inter> space M2 else {})"
   185   have "Pair x -` A = (if x \<in> space M1 then Pair x -` A \<inter> space M2 else {})"
   186     using A[THEN sets.sets_into_space] by (auto simp: space_pair_measure)
   186     using A[THEN sets.sets_into_space] by (auto simp: space_pair_measure)
   187   also have "\<dots> \<in> sets M2"
   187   also have "\<dots> \<in> sets M2"
   188     using A by (auto simp add: measurable_Pair1' intro!: measurable_sets split: if_split_asm)
   188     using A by (auto simp add: measurable_Pair1' intro!: measurable_sets split: if_split_asm)
   189   finally show ?thesis .
   189   finally show ?thesis .
   190 qed
   190 qed
   191 
   191 
   192 lemma measurable_Pair2': "y \<in> space M2 \<Longrightarrow> (\<lambda>x. (x, y)) \<in> measurable M1 (M1 \<Otimes>\<^sub>M M2)"
   192 lemma%unimportant measurable_Pair2': "y \<in> space M2 \<Longrightarrow> (\<lambda>x. (x, y)) \<in> measurable M1 (M1 \<Otimes>\<^sub>M M2)"
   193   by (auto intro!: measurable_Pair)
   193   by (auto intro!: measurable_Pair)
   194 
   194 
   195 lemma sets_Pair2: assumes A: "A \<in> sets (M1 \<Otimes>\<^sub>M M2)" shows "(\<lambda>x. (x, y)) -` A \<in> sets M1"
   195 lemma%unimportant sets_Pair2: assumes A: "A \<in> sets (M1 \<Otimes>\<^sub>M M2)" shows "(\<lambda>x. (x, y)) -` A \<in> sets M1"
   196 proof -
   196 proof -
   197   have "(\<lambda>x. (x, y)) -` A = (if y \<in> space M2 then (\<lambda>x. (x, y)) -` A \<inter> space M1 else {})"
   197   have "(\<lambda>x. (x, y)) -` A = (if y \<in> space M2 then (\<lambda>x. (x, y)) -` A \<inter> space M1 else {})"
   198     using A[THEN sets.sets_into_space] by (auto simp: space_pair_measure)
   198     using A[THEN sets.sets_into_space] by (auto simp: space_pair_measure)
   199   also have "\<dots> \<in> sets M1"
   199   also have "\<dots> \<in> sets M1"
   200     using A by (auto simp add: measurable_Pair2' intro!: measurable_sets split: if_split_asm)
   200     using A by (auto simp add: measurable_Pair2' intro!: measurable_sets split: if_split_asm)
   201   finally show ?thesis .
   201   finally show ?thesis .
   202 qed
   202 qed
   203 
   203 
   204 lemma measurable_Pair2:
   204 lemma%unimportant measurable_Pair2:
   205   assumes f: "f \<in> measurable (M1 \<Otimes>\<^sub>M M2) M" and x: "x \<in> space M1"
   205   assumes f: "f \<in> measurable (M1 \<Otimes>\<^sub>M M2) M" and x: "x \<in> space M1"
   206   shows "(\<lambda>y. f (x, y)) \<in> measurable M2 M"
   206   shows "(\<lambda>y. f (x, y)) \<in> measurable M2 M"
   207   using measurable_comp[OF measurable_Pair1' f, OF x]
   207   using measurable_comp[OF measurable_Pair1' f, OF x]
   208   by (simp add: comp_def)
   208   by (simp add: comp_def)
   209 
   209 
   210 lemma measurable_Pair1:
   210 lemma%unimportant measurable_Pair1:
   211   assumes f: "f \<in> measurable (M1 \<Otimes>\<^sub>M M2) M" and y: "y \<in> space M2"
   211   assumes f: "f \<in> measurable (M1 \<Otimes>\<^sub>M M2) M" and y: "y \<in> space M2"
   212   shows "(\<lambda>x. f (x, y)) \<in> measurable M1 M"
   212   shows "(\<lambda>x. f (x, y)) \<in> measurable M1 M"
   213   using measurable_comp[OF measurable_Pair2' f, OF y]
   213   using measurable_comp[OF measurable_Pair2' f, OF y]
   214   by (simp add: comp_def)
   214   by (simp add: comp_def)
   215 
   215 
   216 lemma Int_stable_pair_measure_generator: "Int_stable {a \<times> b | a b. a \<in> sets A \<and> b \<in> sets B}"
   216 lemma%unimportant Int_stable_pair_measure_generator: "Int_stable {a \<times> b | a b. a \<in> sets A \<and> b \<in> sets B}"
   217   unfolding Int_stable_def
   217   unfolding Int_stable_def
   218   by safe (auto simp add: times_Int_times)
   218   by safe (auto simp add: times_Int_times)
   219 
   219 
   220 lemma (in finite_measure) finite_measure_cut_measurable:
   220 lemma%unimportant (in finite_measure) finite_measure_cut_measurable:
   221   assumes [measurable]: "Q \<in> sets (N \<Otimes>\<^sub>M M)"
   221   assumes [measurable]: "Q \<in> sets (N \<Otimes>\<^sub>M M)"
   222   shows "(\<lambda>x. emeasure M (Pair x -` Q)) \<in> borel_measurable N"
   222   shows "(\<lambda>x. emeasure M (Pair x -` Q)) \<in> borel_measurable N"
   223     (is "?s Q \<in> _")
   223     (is "?s Q \<in> _")
   224   using Int_stable_pair_measure_generator pair_measure_closed assms
   224   using Int_stable_pair_measure_generator pair_measure_closed assms
   225   unfolding sets_pair_measure
   225   unfolding sets_pair_measure
   237     by (simp add: suminf_emeasure disjoint_family_on_vimageI subset_eq vimage_UN sets_pair_measure[symmetric])
   237     by (simp add: suminf_emeasure disjoint_family_on_vimageI subset_eq vimage_UN sets_pair_measure[symmetric])
   238   with union show ?case
   238   with union show ?case
   239     unfolding sets_pair_measure[symmetric] by simp
   239     unfolding sets_pair_measure[symmetric] by simp
   240 qed (auto simp add: if_distrib Int_def[symmetric] intro!: measurable_If)
   240 qed (auto simp add: if_distrib Int_def[symmetric] intro!: measurable_If)
   241 
   241 
   242 lemma (in sigma_finite_measure) measurable_emeasure_Pair:
   242 lemma%unimportant (in sigma_finite_measure) measurable_emeasure_Pair:
   243   assumes Q: "Q \<in> sets (N \<Otimes>\<^sub>M M)" shows "(\<lambda>x. emeasure M (Pair x -` Q)) \<in> borel_measurable N" (is "?s Q \<in> _")
   243   assumes Q: "Q \<in> sets (N \<Otimes>\<^sub>M M)" shows "(\<lambda>x. emeasure M (Pair x -` Q)) \<in> borel_measurable N" (is "?s Q \<in> _")
   244 proof -
   244 proof -
   245   from sigma_finite_disjoint guess F . note F = this
   245   from sigma_finite_disjoint guess F . note F = this
   246   then have F_sets: "\<And>i. F i \<in> sets M" by auto
   246   then have F_sets: "\<And>i. F i \<in> sets M" by auto
   247   let ?C = "\<lambda>x i. F i \<inter> Pair x -` Q"
   247   let ?C = "\<lambda>x i. F i \<inter> Pair x -` Q"
   277       by simp }
   277       by simp }
   278   ultimately show ?thesis using \<open>Q \<in> sets (N \<Otimes>\<^sub>M M)\<close> F_sets
   278   ultimately show ?thesis using \<open>Q \<in> sets (N \<Otimes>\<^sub>M M)\<close> F_sets
   279     by auto
   279     by auto
   280 qed
   280 qed
   281 
   281 
   282 lemma (in sigma_finite_measure) measurable_emeasure[measurable (raw)]:
   282 lemma%unimportant (in sigma_finite_measure) measurable_emeasure[measurable (raw)]:
   283   assumes space: "\<And>x. x \<in> space N \<Longrightarrow> A x \<subseteq> space M"
   283   assumes space: "\<And>x. x \<in> space N \<Longrightarrow> A x \<subseteq> space M"
   284   assumes A: "{x\<in>space (N \<Otimes>\<^sub>M M). snd x \<in> A (fst x)} \<in> sets (N \<Otimes>\<^sub>M M)"
   284   assumes A: "{x\<in>space (N \<Otimes>\<^sub>M M). snd x \<in> A (fst x)} \<in> sets (N \<Otimes>\<^sub>M M)"
   285   shows "(\<lambda>x. emeasure M (A x)) \<in> borel_measurable N"
   285   shows "(\<lambda>x. emeasure M (A x)) \<in> borel_measurable N"
   286 proof -
   286 proof -
   287   from space have "\<And>x. x \<in> space N \<Longrightarrow> Pair x -` {x \<in> space (N \<Otimes>\<^sub>M M). snd x \<in> A (fst x)} = A x"
   287   from space have "\<And>x. x \<in> space N \<Longrightarrow> Pair x -` {x \<in> space (N \<Otimes>\<^sub>M M). snd x \<in> A (fst x)} = A x"
   288     by (auto simp: space_pair_measure)
   288     by (auto simp: space_pair_measure)
   289   with measurable_emeasure_Pair[OF A] show ?thesis
   289   with measurable_emeasure_Pair[OF A] show ?thesis
   290     by (auto cong: measurable_cong)
   290     by (auto cong: measurable_cong)
   291 qed
   291 qed
   292 
   292 
   293 lemma (in sigma_finite_measure) emeasure_pair_measure:
   293 lemma%unimportant (in sigma_finite_measure) emeasure_pair_measure:
   294   assumes "X \<in> sets (N \<Otimes>\<^sub>M M)"
   294   assumes "X \<in> sets (N \<Otimes>\<^sub>M M)"
   295   shows "emeasure (N \<Otimes>\<^sub>M M) X = (\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. indicator X (x, y) \<partial>M \<partial>N)" (is "_ = ?\<mu> X")
   295   shows "emeasure (N \<Otimes>\<^sub>M M) X = (\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. indicator X (x, y) \<partial>M \<partial>N)" (is "_ = ?\<mu> X")
   296 proof (rule emeasure_measure_of[OF pair_measure_def])
   296 proof (rule emeasure_measure_of[OF pair_measure_def])
   297   show "positive (sets (N \<Otimes>\<^sub>M M)) ?\<mu>"
   297   show "positive (sets (N \<Otimes>\<^sub>M M)) ?\<mu>"
   298     by (auto simp: positive_def)
   298     by (auto simp: positive_def)
   312   qed
   312   qed
   313   show "{a \<times> b |a b. a \<in> sets N \<and> b \<in> sets M} \<subseteq> Pow (space N \<times> space M)"
   313   show "{a \<times> b |a b. a \<in> sets N \<and> b \<in> sets M} \<subseteq> Pow (space N \<times> space M)"
   314     using sets.space_closed[of N] sets.space_closed[of M] by auto
   314     using sets.space_closed[of N] sets.space_closed[of M] by auto
   315 qed fact
   315 qed fact
   316 
   316 
   317 lemma (in sigma_finite_measure) emeasure_pair_measure_alt:
   317 lemma%unimportant (in sigma_finite_measure) emeasure_pair_measure_alt:
   318   assumes X: "X \<in> sets (N \<Otimes>\<^sub>M M)"
   318   assumes X: "X \<in> sets (N \<Otimes>\<^sub>M M)"
   319   shows "emeasure (N  \<Otimes>\<^sub>M M) X = (\<integral>\<^sup>+x. emeasure M (Pair x -` X) \<partial>N)"
   319   shows "emeasure (N  \<Otimes>\<^sub>M M) X = (\<integral>\<^sup>+x. emeasure M (Pair x -` X) \<partial>N)"
   320 proof -
   320 proof -
   321   have [simp]: "\<And>x y. indicator X (x, y) = indicator (Pair x -` X) y"
   321   have [simp]: "\<And>x y. indicator X (x, y) = indicator (Pair x -` X) y"
   322     by (auto simp: indicator_def)
   322     by (auto simp: indicator_def)
   323   show ?thesis
   323   show ?thesis
   324     using X by (auto intro!: nn_integral_cong simp: emeasure_pair_measure sets_Pair1)
   324     using X by (auto intro!: nn_integral_cong simp: emeasure_pair_measure sets_Pair1)
   325 qed
   325 qed
   326 
   326 
   327 lemma (in sigma_finite_measure) emeasure_pair_measure_Times:
   327 lemma%important (in sigma_finite_measure) emeasure_pair_measure_Times:
   328   assumes A: "A \<in> sets N" and B: "B \<in> sets M"
   328   assumes A: "A \<in> sets N" and B: "B \<in> sets M"
   329   shows "emeasure (N \<Otimes>\<^sub>M M) (A \<times> B) = emeasure N A * emeasure M B"
   329   shows "emeasure (N \<Otimes>\<^sub>M M) (A \<times> B) = emeasure N A * emeasure M B"
   330 proof -
   330 proof%unimportant -
   331   have "emeasure (N \<Otimes>\<^sub>M M) (A \<times> B) = (\<integral>\<^sup>+x. emeasure M B * indicator A x \<partial>N)"
   331   have "emeasure (N \<Otimes>\<^sub>M M) (A \<times> B) = (\<integral>\<^sup>+x. emeasure M B * indicator A x \<partial>N)"
   332     using A B by (auto intro!: nn_integral_cong simp: emeasure_pair_measure_alt)
   332     using A B by (auto intro!: nn_integral_cong simp: emeasure_pair_measure_alt)
   333   also have "\<dots> = emeasure M B * emeasure N A"
   333   also have "\<dots> = emeasure M B * emeasure N A"
   334     using A by (simp add: nn_integral_cmult_indicator)
   334     using A by (simp add: nn_integral_cmult_indicator)
   335   finally show ?thesis
   335   finally show ?thesis
   336     by (simp add: ac_simps)
   336     by (simp add: ac_simps)
   337 qed
   337 qed
   338 
   338 
   339 subsection \<open>Binary products of $\sigma$-finite emeasure spaces\<close>
   339 subsection%important \<open>Binary products of $\sigma$-finite emeasure spaces\<close>
   340 
   340 
   341 locale pair_sigma_finite = M1?: sigma_finite_measure M1 + M2?: sigma_finite_measure M2
   341 locale%important pair_sigma_finite = M1?: sigma_finite_measure M1 + M2?: sigma_finite_measure M2
   342   for M1 :: "'a measure" and M2 :: "'b measure"
   342   for M1 :: "'a measure" and M2 :: "'b measure"
   343 
   343 
   344 lemma (in pair_sigma_finite) measurable_emeasure_Pair1:
   344 lemma%unimportant (in pair_sigma_finite) measurable_emeasure_Pair1:
   345   "Q \<in> sets (M1 \<Otimes>\<^sub>M M2) \<Longrightarrow> (\<lambda>x. emeasure M2 (Pair x -` Q)) \<in> borel_measurable M1"
   345   "Q \<in> sets (M1 \<Otimes>\<^sub>M M2) \<Longrightarrow> (\<lambda>x. emeasure M2 (Pair x -` Q)) \<in> borel_measurable M1"
   346   using M2.measurable_emeasure_Pair .
   346   using M2.measurable_emeasure_Pair .
   347 
   347 
   348 lemma (in pair_sigma_finite) measurable_emeasure_Pair2:
   348 lemma%important (in pair_sigma_finite) measurable_emeasure_Pair2:
   349   assumes Q: "Q \<in> sets (M1 \<Otimes>\<^sub>M M2)" shows "(\<lambda>y. emeasure M1 ((\<lambda>x. (x, y)) -` Q)) \<in> borel_measurable M2"
   349   assumes Q: "Q \<in> sets (M1 \<Otimes>\<^sub>M M2)" shows "(\<lambda>y. emeasure M1 ((\<lambda>x. (x, y)) -` Q)) \<in> borel_measurable M2"
   350 proof -
   350 proof%unimportant -
   351   have "(\<lambda>(x, y). (y, x)) -` Q \<inter> space (M2 \<Otimes>\<^sub>M M1) \<in> sets (M2 \<Otimes>\<^sub>M M1)"
   351   have "(\<lambda>(x, y). (y, x)) -` Q \<inter> space (M2 \<Otimes>\<^sub>M M1) \<in> sets (M2 \<Otimes>\<^sub>M M1)"
   352     using Q measurable_pair_swap' by (auto intro: measurable_sets)
   352     using Q measurable_pair_swap' by (auto intro: measurable_sets)
   353   note M1.measurable_emeasure_Pair[OF this]
   353   note M1.measurable_emeasure_Pair[OF this]
   354   moreover have "\<And>y. Pair y -` ((\<lambda>(x, y). (y, x)) -` Q \<inter> space (M2 \<Otimes>\<^sub>M M1)) = (\<lambda>x. (x, y)) -` Q"
   354   moreover have "\<And>y. Pair y -` ((\<lambda>(x, y). (y, x)) -` Q \<inter> space (M2 \<Otimes>\<^sub>M M1)) = (\<lambda>x. (x, y)) -` Q"
   355     using Q[THEN sets.sets_into_space] by (auto simp: space_pair_measure)
   355     using Q[THEN sets.sets_into_space] by (auto simp: space_pair_measure)
   356   ultimately show ?thesis by simp
   356   ultimately show ?thesis by simp
   357 qed
   357 qed
   358 
   358 
   359 lemma (in pair_sigma_finite) sigma_finite_up_in_pair_measure_generator:
   359 lemma%important (in pair_sigma_finite) sigma_finite_up_in_pair_measure_generator:
   360   defines "E \<equiv> {A \<times> B | A B. A \<in> sets M1 \<and> B \<in> sets M2}"
   360   defines "E \<equiv> {A \<times> B | A B. A \<in> sets M1 \<and> B \<in> sets M2}"
   361   shows "\<exists>F::nat \<Rightarrow> ('a \<times> 'b) set. range F \<subseteq> E \<and> incseq F \<and> (\<Union>i. F i) = space M1 \<times> space M2 \<and>
   361   shows "\<exists>F::nat \<Rightarrow> ('a \<times> 'b) set. range F \<subseteq> E \<and> incseq F \<and> (\<Union>i. F i) = space M1 \<times> space M2 \<and>
   362     (\<forall>i. emeasure (M1 \<Otimes>\<^sub>M M2) (F i) \<noteq> \<infinity>)"
   362     (\<forall>i. emeasure (M1 \<Otimes>\<^sub>M M2) (F i) \<noteq> \<infinity>)"
   363 proof -
   363 proof%unimportant -
   364   from M1.sigma_finite_incseq guess F1 . note F1 = this
   364   from M1.sigma_finite_incseq guess F1 . note F1 = this
   365   from M2.sigma_finite_incseq guess F2 . note F2 = this
   365   from M2.sigma_finite_incseq guess F2 . note F2 = this
   366   from F1 F2 have space: "space M1 = (\<Union>i. F1 i)" "space M2 = (\<Union>i. F2 i)" by auto
   366   from F1 F2 have space: "space M1 = (\<Union>i. F1 i)" "space M2 = (\<Union>i. F2 i)" by auto
   367   let ?F = "\<lambda>i. F1 i \<times> F2 i"
   367   let ?F = "\<lambda>i. F1 i \<times> F2 i"
   368   show ?thesis
   368   show ?thesis
   392     with F1 F2 show "emeasure (M1 \<Otimes>\<^sub>M M2) (F1 i \<times> F2 i) \<noteq> \<infinity>"
   392     with F1 F2 show "emeasure (M1 \<Otimes>\<^sub>M M2) (F1 i \<times> F2 i) \<noteq> \<infinity>"
   393       by (auto simp add: emeasure_pair_measure_Times ennreal_mult_eq_top_iff)
   393       by (auto simp add: emeasure_pair_measure_Times ennreal_mult_eq_top_iff)
   394   qed
   394   qed
   395 qed
   395 qed
   396 
   396 
   397 sublocale pair_sigma_finite \<subseteq> P?: sigma_finite_measure "M1 \<Otimes>\<^sub>M M2"
   397 sublocale%important pair_sigma_finite \<subseteq> P?: sigma_finite_measure "M1 \<Otimes>\<^sub>M M2"
   398 proof
   398 proof
   399   from M1.sigma_finite_countable guess F1 ..
   399   from M1.sigma_finite_countable guess F1 ..
   400   moreover from M2.sigma_finite_countable guess F2 ..
   400   moreover from M2.sigma_finite_countable guess F2 ..
   401   ultimately show
   401   ultimately show
   402     "\<exists>A. countable A \<and> A \<subseteq> sets (M1 \<Otimes>\<^sub>M M2) \<and> \<Union>A = space (M1 \<Otimes>\<^sub>M M2) \<and> (\<forall>a\<in>A. emeasure (M1 \<Otimes>\<^sub>M M2) a \<noteq> \<infinity>)"
   402     "\<exists>A. countable A \<and> A \<subseteq> sets (M1 \<Otimes>\<^sub>M M2) \<and> \<Union>A = space (M1 \<Otimes>\<^sub>M M2) \<and> (\<forall>a\<in>A. emeasure (M1 \<Otimes>\<^sub>M M2) a \<noteq> \<infinity>)"
   403     by (intro exI[of _ "(\<lambda>(a, b). a \<times> b) ` (F1 \<times> F2)"] conjI)
   403     by (intro exI[of _ "(\<lambda>(a, b). a \<times> b) ` (F1 \<times> F2)"] conjI)
   404        (auto simp: M2.emeasure_pair_measure_Times space_pair_measure set_eq_iff subset_eq ennreal_mult_eq_top_iff)
   404        (auto simp: M2.emeasure_pair_measure_Times space_pair_measure set_eq_iff subset_eq ennreal_mult_eq_top_iff)
   405 qed
   405 qed
   406 
   406 
   407 lemma sigma_finite_pair_measure:
   407 lemma%unimportant sigma_finite_pair_measure:
   408   assumes A: "sigma_finite_measure A" and B: "sigma_finite_measure B"
   408   assumes A: "sigma_finite_measure A" and B: "sigma_finite_measure B"
   409   shows "sigma_finite_measure (A \<Otimes>\<^sub>M B)"
   409   shows "sigma_finite_measure (A \<Otimes>\<^sub>M B)"
   410 proof -
   410 proof -
   411   interpret A: sigma_finite_measure A by fact
   411   interpret A: sigma_finite_measure A by fact
   412   interpret B: sigma_finite_measure B by fact
   412   interpret B: sigma_finite_measure B by fact
   413   interpret AB: pair_sigma_finite A  B ..
   413   interpret AB: pair_sigma_finite A  B ..
   414   show ?thesis ..
   414   show ?thesis ..
   415 qed
   415 qed
   416 
   416 
   417 lemma sets_pair_swap:
   417 lemma%unimportant sets_pair_swap:
   418   assumes "A \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   418   assumes "A \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   419   shows "(\<lambda>(x, y). (y, x)) -` A \<inter> space (M2 \<Otimes>\<^sub>M M1) \<in> sets (M2 \<Otimes>\<^sub>M M1)"
   419   shows "(\<lambda>(x, y). (y, x)) -` A \<inter> space (M2 \<Otimes>\<^sub>M M1) \<in> sets (M2 \<Otimes>\<^sub>M M1)"
   420   using measurable_pair_swap' assms by (rule measurable_sets)
   420   using measurable_pair_swap' assms by (rule measurable_sets)
   421 
   421 
   422 lemma (in pair_sigma_finite) distr_pair_swap:
   422 lemma%important (in pair_sigma_finite) distr_pair_swap:
   423   "M1 \<Otimes>\<^sub>M M2 = distr (M2 \<Otimes>\<^sub>M M1) (M1 \<Otimes>\<^sub>M M2) (\<lambda>(x, y). (y, x))" (is "?P = ?D")
   423   "M1 \<Otimes>\<^sub>M M2 = distr (M2 \<Otimes>\<^sub>M M1) (M1 \<Otimes>\<^sub>M M2) (\<lambda>(x, y). (y, x))" (is "?P = ?D")
   424 proof -
   424 proof%unimportant -
   425   from sigma_finite_up_in_pair_measure_generator guess F :: "nat \<Rightarrow> ('a \<times> 'b) set" .. note F = this
   425   from sigma_finite_up_in_pair_measure_generator guess F :: "nat \<Rightarrow> ('a \<times> 'b) set" .. note F = this
   426   let ?E = "{a \<times> b |a b. a \<in> sets M1 \<and> b \<in> sets M2}"
   426   let ?E = "{a \<times> b |a b. a \<in> sets M1 \<and> b \<in> sets M2}"
   427   show ?thesis
   427   show ?thesis
   428   proof (rule measure_eqI_generator_eq[OF Int_stable_pair_measure_generator[of M1 M2]])
   428   proof (rule measure_eqI_generator_eq[OF Int_stable_pair_measure_generator[of M1 M2]])
   429     show "?E \<subseteq> Pow (space ?P)"
   429     show "?E \<subseteq> Pow (space ?P)"
   444       by (simp add: M2.emeasure_pair_measure_Times M1.emeasure_pair_measure_Times emeasure_distr
   444       by (simp add: M2.emeasure_pair_measure_Times M1.emeasure_pair_measure_Times emeasure_distr
   445                     measurable_pair_swap' ac_simps)
   445                     measurable_pair_swap' ac_simps)
   446   qed
   446   qed
   447 qed
   447 qed
   448 
   448 
   449 lemma (in pair_sigma_finite) emeasure_pair_measure_alt2:
   449 lemma%unimportant (in pair_sigma_finite) emeasure_pair_measure_alt2:
   450   assumes A: "A \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   450   assumes A: "A \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   451   shows "emeasure (M1 \<Otimes>\<^sub>M M2) A = (\<integral>\<^sup>+y. emeasure M1 ((\<lambda>x. (x, y)) -` A) \<partial>M2)"
   451   shows "emeasure (M1 \<Otimes>\<^sub>M M2) A = (\<integral>\<^sup>+y. emeasure M1 ((\<lambda>x. (x, y)) -` A) \<partial>M2)"
   452     (is "_ = ?\<nu> A")
   452     (is "_ = ?\<nu> A")
   453 proof -
   453 proof%unimportant -
   454   have [simp]: "\<And>y. (Pair y -` ((\<lambda>(x, y). (y, x)) -` A \<inter> space (M2 \<Otimes>\<^sub>M M1))) = (\<lambda>x. (x, y)) -` A"
   454   have [simp]: "\<And>y. (Pair y -` ((\<lambda>(x, y). (y, x)) -` A \<inter> space (M2 \<Otimes>\<^sub>M M1))) = (\<lambda>x. (x, y)) -` A"
   455     using sets.sets_into_space[OF A] by (auto simp: space_pair_measure)
   455     using sets.sets_into_space[OF A] by (auto simp: space_pair_measure)
   456   show ?thesis using A
   456   show ?thesis using A
   457     by (subst distr_pair_swap)
   457     by (subst distr_pair_swap)
   458        (simp_all del: vimage_Int add: measurable_sets[OF measurable_pair_swap']
   458        (simp_all del: vimage_Int add: measurable_sets[OF measurable_pair_swap']
   459                  M1.emeasure_pair_measure_alt emeasure_distr[OF measurable_pair_swap' A])
   459                  M1.emeasure_pair_measure_alt emeasure_distr[OF measurable_pair_swap' A])
   460 qed
   460 qed
   461 
   461 
   462 lemma (in pair_sigma_finite) AE_pair:
   462 lemma%unimportant (in pair_sigma_finite) AE_pair:
   463   assumes "AE x in (M1 \<Otimes>\<^sub>M M2). Q x"
   463   assumes "AE x in (M1 \<Otimes>\<^sub>M M2). Q x"
   464   shows "AE x in M1. (AE y in M2. Q (x, y))"
   464   shows "AE x in M1. (AE y in M2. Q (x, y))"
   465 proof -
   465 proof -
   466   obtain N where N: "N \<in> sets (M1 \<Otimes>\<^sub>M M2)" "emeasure (M1 \<Otimes>\<^sub>M M2) N = 0" "{x\<in>space (M1 \<Otimes>\<^sub>M M2). \<not> Q x} \<subseteq> N"
   466   obtain N where N: "N \<in> sets (M1 \<Otimes>\<^sub>M M2)" "emeasure (M1 \<Otimes>\<^sub>M M2) N = 0" "{x\<in>space (M1 \<Otimes>\<^sub>M M2). \<not> Q x} \<subseteq> N"
   467     using assms unfolding eventually_ae_filter by auto
   467     using assms unfolding eventually_ae_filter by auto
   483     then show "{x \<in> space M1. \<not> (AE y in M2. Q (x, y))} \<subseteq> {x \<in> space M1. emeasure M2 (Pair x -` N) \<noteq> 0}"
   483     then show "{x \<in> space M1. \<not> (AE y in M2. Q (x, y))} \<subseteq> {x \<in> space M1. emeasure M2 (Pair x -` N) \<noteq> 0}"
   484       by auto
   484       by auto
   485   qed
   485   qed
   486 qed
   486 qed
   487 
   487 
   488 lemma (in pair_sigma_finite) AE_pair_measure:
   488 lemma%important (in pair_sigma_finite) AE_pair_measure:
   489   assumes "{x\<in>space (M1 \<Otimes>\<^sub>M M2). P x} \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   489   assumes "{x\<in>space (M1 \<Otimes>\<^sub>M M2). P x} \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   490   assumes ae: "AE x in M1. AE y in M2. P (x, y)"
   490   assumes ae: "AE x in M1. AE y in M2. P (x, y)"
   491   shows "AE x in M1 \<Otimes>\<^sub>M M2. P x"
   491   shows "AE x in M1 \<Otimes>\<^sub>M M2. P x"
   492 proof (subst AE_iff_measurable[OF _ refl])
   492 proof%unimportant (subst AE_iff_measurable[OF _ refl])
   493   show "{x\<in>space (M1 \<Otimes>\<^sub>M M2). \<not> P x} \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   493   show "{x\<in>space (M1 \<Otimes>\<^sub>M M2). \<not> P x} \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   494     by (rule sets.sets_Collect) fact
   494     by (rule sets.sets_Collect) fact
   495   then have "emeasure (M1 \<Otimes>\<^sub>M M2) {x \<in> space (M1 \<Otimes>\<^sub>M M2). \<not> P x} =
   495   then have "emeasure (M1 \<Otimes>\<^sub>M M2) {x \<in> space (M1 \<Otimes>\<^sub>M M2). \<not> P x} =
   496       (\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. indicator {x \<in> space (M1 \<Otimes>\<^sub>M M2). \<not> P x} (x, y) \<partial>M2 \<partial>M1)"
   496       (\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. indicator {x \<in> space (M1 \<Otimes>\<^sub>M M2). \<not> P x} (x, y) \<partial>M2 \<partial>M1)"
   497     by (simp add: M2.emeasure_pair_measure)
   497     by (simp add: M2.emeasure_pair_measure)
   503     apply auto
   503     apply auto
   504     done
   504     done
   505   finally show "emeasure (M1 \<Otimes>\<^sub>M M2) {x \<in> space (M1 \<Otimes>\<^sub>M M2). \<not> P x} = 0" by simp
   505   finally show "emeasure (M1 \<Otimes>\<^sub>M M2) {x \<in> space (M1 \<Otimes>\<^sub>M M2). \<not> P x} = 0" by simp
   506 qed
   506 qed
   507 
   507 
   508 lemma (in pair_sigma_finite) AE_pair_iff:
   508 lemma%unimportant (in pair_sigma_finite) AE_pair_iff:
   509   "{x\<in>space (M1 \<Otimes>\<^sub>M M2). P (fst x) (snd x)} \<in> sets (M1 \<Otimes>\<^sub>M M2) \<Longrightarrow>
   509   "{x\<in>space (M1 \<Otimes>\<^sub>M M2). P (fst x) (snd x)} \<in> sets (M1 \<Otimes>\<^sub>M M2) \<Longrightarrow>
   510     (AE x in M1. AE y in M2. P x y) \<longleftrightarrow> (AE x in (M1 \<Otimes>\<^sub>M M2). P (fst x) (snd x))"
   510     (AE x in M1. AE y in M2. P x y) \<longleftrightarrow> (AE x in (M1 \<Otimes>\<^sub>M M2). P (fst x) (snd x))"
   511   using AE_pair[of "\<lambda>x. P (fst x) (snd x)"] AE_pair_measure[of "\<lambda>x. P (fst x) (snd x)"] by auto
   511   using AE_pair[of "\<lambda>x. P (fst x) (snd x)"] AE_pair_measure[of "\<lambda>x. P (fst x) (snd x)"] by auto
   512 
   512 
   513 lemma (in pair_sigma_finite) AE_commute:
   513 lemma%unimportant (in pair_sigma_finite) AE_commute:
   514   assumes P: "{x\<in>space (M1 \<Otimes>\<^sub>M M2). P (fst x) (snd x)} \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   514   assumes P: "{x\<in>space (M1 \<Otimes>\<^sub>M M2). P (fst x) (snd x)} \<in> sets (M1 \<Otimes>\<^sub>M M2)"
   515   shows "(AE x in M1. AE y in M2. P x y) \<longleftrightarrow> (AE y in M2. AE x in M1. P x y)"
   515   shows "(AE x in M1. AE y in M2. P x y) \<longleftrightarrow> (AE y in M2. AE x in M1. P x y)"
   516 proof -
   516 proof -
   517   interpret Q: pair_sigma_finite M2 M1 ..
   517   interpret Q: pair_sigma_finite M2 M1 ..
   518   have [simp]: "\<And>x. (fst (case x of (x, y) \<Rightarrow> (y, x))) = snd x" "\<And>x. (snd (case x of (x, y) \<Rightarrow> (y, x))) = fst x"
   518   have [simp]: "\<And>x. (fst (case x of (x, y) \<Rightarrow> (y, x))) = snd x" "\<And>x. (snd (case x of (x, y) \<Rightarrow> (y, x))) = fst x"
   529     apply (subst Q.AE_pair_iff)
   529     apply (subst Q.AE_pair_iff)
   530     apply simp_all
   530     apply simp_all
   531     done
   531     done
   532 qed
   532 qed
   533 
   533 
   534 subsection "Fubinis theorem"
   534 subsection%important "Fubinis theorem"
   535 
   535 
   536 lemma measurable_compose_Pair1:
   536 lemma%unimportant measurable_compose_Pair1:
   537   "x \<in> space M1 \<Longrightarrow> g \<in> measurable (M1 \<Otimes>\<^sub>M M2) L \<Longrightarrow> (\<lambda>y. g (x, y)) \<in> measurable M2 L"
   537   "x \<in> space M1 \<Longrightarrow> g \<in> measurable (M1 \<Otimes>\<^sub>M M2) L \<Longrightarrow> (\<lambda>y. g (x, y)) \<in> measurable M2 L"
   538   by simp
   538   by simp
   539 
   539 
   540 lemma (in sigma_finite_measure) borel_measurable_nn_integral_fst:
   540 lemma%unimportant (in sigma_finite_measure) borel_measurable_nn_integral_fst:
   541   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M)"
   541   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M)"
   542   shows "(\<lambda>x. \<integral>\<^sup>+ y. f (x, y) \<partial>M) \<in> borel_measurable M1"
   542   shows "(\<lambda>x. \<integral>\<^sup>+ y. f (x, y) \<partial>M) \<in> borel_measurable M1"
   543 using f proof induct
   543 using f proof%unimportant induct
   544   case (cong u v)
   544   case (cong u v)
   545   then have "\<And>w x. w \<in> space M1 \<Longrightarrow> x \<in> space M \<Longrightarrow> u (w, x) = v (w, x)"
   545   then have "\<And>w x. w \<in> space M1 \<Longrightarrow> x \<in> space M \<Longrightarrow> u (w, x) = v (w, x)"
   546     by (auto simp: space_pair_measure)
   546     by (auto simp: space_pair_measure)
   547   show ?case
   547   show ?case
   548     apply (subst measurable_cong)
   548     apply (subst measurable_cong)
   559     by (rule measurable_cong[THEN iffD1])
   559     by (rule measurable_cong[THEN iffD1])
   560 qed (simp_all add: nn_integral_add nn_integral_cmult measurable_compose_Pair1
   560 qed (simp_all add: nn_integral_add nn_integral_cmult measurable_compose_Pair1
   561                    nn_integral_monotone_convergence_SUP incseq_def le_fun_def
   561                    nn_integral_monotone_convergence_SUP incseq_def le_fun_def
   562               cong: measurable_cong)
   562               cong: measurable_cong)
   563 
   563 
   564 lemma (in sigma_finite_measure) nn_integral_fst:
   564 lemma%unimportant (in sigma_finite_measure) nn_integral_fst:
   565   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M)"
   565   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M)"
   566   shows "(\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. f (x, y) \<partial>M \<partial>M1) = integral\<^sup>N (M1 \<Otimes>\<^sub>M M) f" (is "?I f = _")
   566   shows "(\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. f (x, y) \<partial>M \<partial>M1) = integral\<^sup>N (M1 \<Otimes>\<^sub>M M) f" (is "?I f = _")
   567 using f proof induct
   567   using f proof induct
   568   case (cong u v)
   568   case (cong u v)
   569   then have "?I u = ?I v"
   569   then have "?I u = ?I v"
   570     by (intro nn_integral_cong) (auto simp: space_pair_measure)
   570     by (intro nn_integral_cong) (auto simp: space_pair_measure)
   571   with cong show ?case
   571   with cong show ?case
   572     by (simp cong: nn_integral_cong)
   572     by (simp cong: nn_integral_cong)
   573 qed (simp_all add: emeasure_pair_measure nn_integral_cmult nn_integral_add
   573 qed (simp_all add: emeasure_pair_measure nn_integral_cmult nn_integral_add
   574                    nn_integral_monotone_convergence_SUP measurable_compose_Pair1
   574                    nn_integral_monotone_convergence_SUP measurable_compose_Pair1
   575                    borel_measurable_nn_integral_fst nn_integral_mono incseq_def le_fun_def
   575                    borel_measurable_nn_integral_fst nn_integral_mono incseq_def le_fun_def
   576               cong: nn_integral_cong)
   576               cong: nn_integral_cong)
   577 
   577 
   578 lemma (in sigma_finite_measure) borel_measurable_nn_integral[measurable (raw)]:
   578 lemma%unimportant (in sigma_finite_measure) borel_measurable_nn_integral[measurable (raw)]:
   579   "case_prod f \<in> borel_measurable (N \<Otimes>\<^sub>M M) \<Longrightarrow> (\<lambda>x. \<integral>\<^sup>+ y. f x y \<partial>M) \<in> borel_measurable N"
   579   "case_prod f \<in> borel_measurable (N \<Otimes>\<^sub>M M) \<Longrightarrow> (\<lambda>x. \<integral>\<^sup>+ y. f x y \<partial>M) \<in> borel_measurable N"
   580   using borel_measurable_nn_integral_fst[of "case_prod f" N] by simp
   580   using borel_measurable_nn_integral_fst[of "case_prod f" N] by simp
   581 
   581 
   582 lemma (in pair_sigma_finite) nn_integral_snd:
   582 lemma%important (in pair_sigma_finite) nn_integral_snd:
   583   assumes f[measurable]: "f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M2)"
   583   assumes f[measurable]: "f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M2)"
   584   shows "(\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f (x, y) \<partial>M1) \<partial>M2) = integral\<^sup>N (M1 \<Otimes>\<^sub>M M2) f"
   584   shows "(\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f (x, y) \<partial>M1) \<partial>M2) = integral\<^sup>N (M1 \<Otimes>\<^sub>M M2) f"
   585 proof -
   585 proof%unimportant -
   586   note measurable_pair_swap[OF f]
   586   note measurable_pair_swap[OF f]
   587   from M1.nn_integral_fst[OF this]
   587   from M1.nn_integral_fst[OF this]
   588   have "(\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f (x, y) \<partial>M1) \<partial>M2) = (\<integral>\<^sup>+ (x, y). f (y, x) \<partial>(M2 \<Otimes>\<^sub>M M1))"
   588   have "(\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f (x, y) \<partial>M1) \<partial>M2) = (\<integral>\<^sup>+ (x, y). f (y, x) \<partial>(M2 \<Otimes>\<^sub>M M1))"
   589     by simp
   589     by simp
   590   also have "(\<integral>\<^sup>+ (x, y). f (y, x) \<partial>(M2 \<Otimes>\<^sub>M M1)) = integral\<^sup>N (M1 \<Otimes>\<^sub>M M2) f"
   590   also have "(\<integral>\<^sup>+ (x, y). f (y, x) \<partial>(M2 \<Otimes>\<^sub>M M1)) = integral\<^sup>N (M1 \<Otimes>\<^sub>M M2) f"
   591     by (subst distr_pair_swap) (auto simp add: nn_integral_distr intro!: nn_integral_cong)
   591     by (subst distr_pair_swap) (auto simp add: nn_integral_distr intro!: nn_integral_cong)
   592   finally show ?thesis .
   592   finally show ?thesis .
   593 qed
   593 qed
   594 
   594 
   595 lemma (in pair_sigma_finite) Fubini:
   595 lemma%important (in pair_sigma_finite) Fubini:
   596   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M2)"
   596   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M2)"
   597   shows "(\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f (x, y) \<partial>M1) \<partial>M2) = (\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f (x, y) \<partial>M2) \<partial>M1)"
   597   shows "(\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f (x, y) \<partial>M1) \<partial>M2) = (\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f (x, y) \<partial>M2) \<partial>M1)"
   598   unfolding nn_integral_snd[OF assms] M2.nn_integral_fst[OF assms] ..
   598   unfolding nn_integral_snd[OF assms] M2.nn_integral_fst[OF assms] ..
   599 
   599 
   600 lemma (in pair_sigma_finite) Fubini':
   600 lemma%important (in pair_sigma_finite) Fubini':
   601   assumes f: "case_prod f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M2)"
   601   assumes f: "case_prod f \<in> borel_measurable (M1 \<Otimes>\<^sub>M M2)"
   602   shows "(\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f x y \<partial>M1) \<partial>M2) = (\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f x y \<partial>M2) \<partial>M1)"
   602   shows "(\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f x y \<partial>M1) \<partial>M2) = (\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f x y \<partial>M2) \<partial>M1)"
   603   using Fubini[OF f] by simp
   603   using Fubini[OF f] by simp
   604 
   604 
   605 subsection \<open>Products on counting spaces, densities and distributions\<close>
   605 subsection%important \<open>Products on counting spaces, densities and distributions\<close>
   606 
   606 
   607 lemma sigma_prod:
   607 lemma%important sigma_prod:
   608   assumes X_cover: "\<exists>E\<subseteq>A. countable E \<and> X = \<Union>E" and A: "A \<subseteq> Pow X"
   608   assumes X_cover: "\<exists>E\<subseteq>A. countable E \<and> X = \<Union>E" and A: "A \<subseteq> Pow X"
   609   assumes Y_cover: "\<exists>E\<subseteq>B. countable E \<and> Y = \<Union>E" and B: "B \<subseteq> Pow Y"
   609   assumes Y_cover: "\<exists>E\<subseteq>B. countable E \<and> Y = \<Union>E" and B: "B \<subseteq> Pow Y"
   610   shows "sigma X A \<Otimes>\<^sub>M sigma Y B = sigma (X \<times> Y) {a \<times> b | a b. a \<in> A \<and> b \<in> B}"
   610   shows "sigma X A \<Otimes>\<^sub>M sigma Y B = sigma (X \<times> Y) {a \<times> b | a b. a \<in> A \<and> b \<in> B}"
   611     (is "?P = ?S")
   611     (is "?P = ?S")
   612 proof (rule measure_eqI)
   612 proof%unimportant (rule measure_eqI)
   613   have [simp]: "snd \<in> X \<times> Y \<rightarrow> Y" "fst \<in> X \<times> Y \<rightarrow> X"
   613   have [simp]: "snd \<in> X \<times> Y \<rightarrow> Y" "fst \<in> X \<times> Y \<rightarrow> X"
   614     by auto
   614     by auto
   615   let ?XY = "{{fst -` a \<inter> X \<times> Y | a. a \<in> A}, {snd -` b \<inter> X \<times> Y | b. b \<in> B}}"
   615   let ?XY = "{{fst -` a \<inter> X \<times> Y | a. a \<in> A}, {snd -` b \<inter> X \<times> Y | b. b \<in> B}}"
   616   have "sets ?P = sets (SUP xy:?XY. sigma (X \<times> Y) xy)"
   616   have "sets ?P = sets (SUP xy:?XY. sigma (X \<times> Y) xy)"
   617     by (simp add: vimage_algebra_sigma sets_pair_eq_sets_fst_snd A B)
   617     by (simp add: vimage_algebra_sigma sets_pair_eq_sets_fst_snd A B)
   660     proof qed (simp add: emeasure_sigma)
   660     proof qed (simp add: emeasure_sigma)
   661   fix A assume "A \<in> sets ?P" then show "emeasure ?P A = emeasure ?S A"
   661   fix A assume "A \<in> sets ?P" then show "emeasure ?P A = emeasure ?S A"
   662     by (simp add: emeasure_pair_measure_alt emeasure_sigma)
   662     by (simp add: emeasure_pair_measure_alt emeasure_sigma)
   663 qed
   663 qed
   664 
   664 
   665 lemma sigma_sets_pair_measure_generator_finite:
   665 lemma%unimportant sigma_sets_pair_measure_generator_finite:
   666   assumes "finite A" and "finite B"
   666   assumes "finite A" and "finite B"
   667   shows "sigma_sets (A \<times> B) { a \<times> b | a b. a \<subseteq> A \<and> b \<subseteq> B} = Pow (A \<times> B)"
   667   shows "sigma_sets (A \<times> B) { a \<times> b | a b. a \<subseteq> A \<and> b \<subseteq> B} = Pow (A \<times> B)"
   668   (is "sigma_sets ?prod ?sets = _")
   668   (is "sigma_sets ?prod ?sets = _")
   669 proof safe
   669 proof safe
   670   have fin: "finite (A \<times> B)" using assms by (rule finite_cartesian_product)
   670   have fin: "finite (A \<times> B)" using assms by (rule finite_cartesian_product)
   684   assume "x \<in> sigma_sets ?prod ?sets" and "(a, b) \<in> x"
   684   assume "x \<in> sigma_sets ?prod ?sets" and "(a, b) \<in> x"
   685   from sigma_sets_into_sp[OF _ this(1)] this(2)
   685   from sigma_sets_into_sp[OF _ this(1)] this(2)
   686   show "a \<in> A" and "b \<in> B" by auto
   686   show "a \<in> A" and "b \<in> B" by auto
   687 qed
   687 qed
   688 
   688 
   689 lemma sets_pair_eq:
   689 lemma%important sets_pair_eq:
   690   assumes Ea: "Ea \<subseteq> Pow (space A)" "sets A = sigma_sets (space A) Ea"
   690   assumes Ea: "Ea \<subseteq> Pow (space A)" "sets A = sigma_sets (space A) Ea"
   691     and Ca: "countable Ca" "Ca \<subseteq> Ea" "\<Union>Ca = space A"
   691     and Ca: "countable Ca" "Ca \<subseteq> Ea" "\<Union>Ca = space A"
   692     and Eb: "Eb \<subseteq> Pow (space B)" "sets B = sigma_sets (space B) Eb"
   692     and Eb: "Eb \<subseteq> Pow (space B)" "sets B = sigma_sets (space B) Eb"
   693     and Cb: "countable Cb" "Cb \<subseteq> Eb" "\<Union>Cb = space B"
   693     and Cb: "countable Cb" "Cb \<subseteq> Eb" "\<Union>Cb = space B"
   694   shows "sets (A \<Otimes>\<^sub>M B) = sets (sigma (space A \<times> space B) { a \<times> b | a b. a \<in> Ea \<and> b \<in> Eb })"
   694   shows "sets (A \<Otimes>\<^sub>M B) = sets (sigma (space A \<times> space B) { a \<times> b | a b. a \<in> Ea \<and> b \<in> Eb })"
   695     (is "_ = sets (sigma ?\<Omega> ?E)")
   695     (is "_ = sets (sigma ?\<Omega> ?E)")
   696 proof
   696 proof%unimportant
   697   show "sets (sigma ?\<Omega> ?E) \<subseteq> sets (A \<Otimes>\<^sub>M B)"
   697   show "sets (sigma ?\<Omega> ?E) \<subseteq> sets (A \<Otimes>\<^sub>M B)"
   698     using Ea(1) Eb(1) by (subst sigma_le_sets) (auto simp: Ea(2) Eb(2))
   698     using Ea(1) Eb(1) by (subst sigma_le_sets) (auto simp: Ea(2) Eb(2))
   699   have "?E \<subseteq> Pow ?\<Omega>"
   699   have "?E \<subseteq> Pow ?\<Omega>"
   700     using Ea(1) Eb(1) by auto
   700     using Ea(1) Eb(1) by auto
   701   then have E: "a \<in> Ea \<Longrightarrow> b \<in> Eb \<Longrightarrow> a \<times> b \<in> sets (sigma ?\<Omega> ?E)" for a b
   701   then have E: "a \<in> Ea \<Longrightarrow> b \<in> Eb \<Longrightarrow> a \<times> b \<in> sets (sigma ?\<Omega> ?E)" for a b
   731       using Ca \<open>b \<in> Eb\<close> by (auto intro!: sets.countable_UN' E)
   731       using Ca \<open>b \<in> Eb\<close> by (auto intro!: sets.countable_UN' E)
   732   qed
   732   qed
   733   finally show "sets (A \<Otimes>\<^sub>M B) \<subseteq> sets (sigma ?\<Omega> ?E)" .
   733   finally show "sets (A \<Otimes>\<^sub>M B) \<subseteq> sets (sigma ?\<Omega> ?E)" .
   734 qed
   734 qed
   735 
   735 
   736 lemma borel_prod:
   736 lemma%important borel_prod:
   737   "(borel \<Otimes>\<^sub>M borel) = (borel :: ('a::second_countable_topology \<times> 'b::second_countable_topology) measure)"
   737   "(borel \<Otimes>\<^sub>M borel) = (borel :: ('a::second_countable_topology \<times> 'b::second_countable_topology) measure)"
   738   (is "?P = ?B")
   738   (is "?P = ?B")
   739 proof -
   739 proof%unimportant -
   740   have "?B = sigma UNIV {A \<times> B | A B. open A \<and> open B}"
   740   have "?B = sigma UNIV {A \<times> B | A B. open A \<and> open B}"
   741     by (rule second_countable_borel_measurable[OF open_prod_generated])
   741     by (rule second_countable_borel_measurable[OF open_prod_generated])
   742   also have "\<dots> = ?P"
   742   also have "\<dots> = ?P"
   743     unfolding borel_def
   743     unfolding borel_def
   744     by (subst sigma_prod) (auto intro!: exI[of _ "{UNIV}"])
   744     by (subst sigma_prod) (auto intro!: exI[of _ "{UNIV}"])
   745   finally show ?thesis ..
   745   finally show ?thesis ..
   746 qed
   746 qed
   747 
   747 
   748 lemma pair_measure_count_space:
   748 lemma%important pair_measure_count_space:
   749   assumes A: "finite A" and B: "finite B"
   749   assumes A: "finite A" and B: "finite B"
   750   shows "count_space A \<Otimes>\<^sub>M count_space B = count_space (A \<times> B)" (is "?P = ?C")
   750   shows "count_space A \<Otimes>\<^sub>M count_space B = count_space (A \<times> B)" (is "?P = ?C")
   751 proof (rule measure_eqI)
   751 proof%unimportant (rule measure_eqI)
   752   interpret A: finite_measure "count_space A" by (rule finite_measure_count_space) fact
   752   interpret A: finite_measure "count_space A" by (rule finite_measure_count_space) fact
   753   interpret B: finite_measure "count_space B" by (rule finite_measure_count_space) fact
   753   interpret B: finite_measure "count_space B" by (rule finite_measure_count_space) fact
   754   interpret P: pair_sigma_finite "count_space A" "count_space B" ..
   754   interpret P: pair_sigma_finite "count_space A" "count_space B" ..
   755   show eq: "sets ?P = sets ?C"
   755   show eq: "sets ?P = sets ?C"
   756     by (simp add: sets_pair_measure sigma_sets_pair_measure_generator_finite A B)
   756     by (simp add: sets_pair_measure sigma_sets_pair_measure_generator_finite A B)
   774     done
   774     done
   775   finally show "emeasure ?P X = emeasure ?C X" .
   775   finally show "emeasure ?P X = emeasure ?C X" .
   776 qed
   776 qed
   777 
   777 
   778 
   778 
   779 lemma emeasure_prod_count_space:
   779 lemma%unimportant emeasure_prod_count_space:
   780   assumes A: "A \<in> sets (count_space UNIV \<Otimes>\<^sub>M M)" (is "A \<in> sets (?A \<Otimes>\<^sub>M ?B)")
   780   assumes A: "A \<in> sets (count_space UNIV \<Otimes>\<^sub>M M)" (is "A \<in> sets (?A \<Otimes>\<^sub>M ?B)")
   781   shows "emeasure (?A \<Otimes>\<^sub>M ?B) A = (\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. indicator A (x, y) \<partial>?B \<partial>?A)"
   781   shows "emeasure (?A \<Otimes>\<^sub>M ?B) A = (\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. indicator A (x, y) \<partial>?B \<partial>?A)"
   782   by (rule emeasure_measure_of[OF pair_measure_def])
   782   by (rule emeasure_measure_of[OF pair_measure_def])
   783      (auto simp: countably_additive_def positive_def suminf_indicator A
   783      (auto simp: countably_additive_def positive_def suminf_indicator A
   784                  nn_integral_suminf[symmetric] dest: sets.sets_into_space)
   784                  nn_integral_suminf[symmetric] dest: sets.sets_into_space)
   785 
   785 
   786 lemma emeasure_prod_count_space_single[simp]: "emeasure (count_space UNIV \<Otimes>\<^sub>M count_space UNIV) {x} = 1"
   786 lemma%unimportant emeasure_prod_count_space_single[simp]: "emeasure (count_space UNIV \<Otimes>\<^sub>M count_space UNIV) {x} = 1"
   787 proof -
   787 proof -
   788   have [simp]: "\<And>a b x y. indicator {(a, b)} (x, y) = (indicator {a} x * indicator {b} y::ennreal)"
   788   have [simp]: "\<And>a b x y. indicator {(a, b)} (x, y) = (indicator {a} x * indicator {b} y::ennreal)"
   789     by (auto split: split_indicator)
   789     by (auto split: split_indicator)
   790   show ?thesis
   790   show ?thesis
   791     by (cases x) (auto simp: emeasure_prod_count_space nn_integral_cmult sets_Pair)
   791     by (cases x) (auto simp: emeasure_prod_count_space nn_integral_cmult sets_Pair)
   792 qed
   792 qed
   793 
   793 
   794 lemma emeasure_count_space_prod_eq:
   794 lemma%important emeasure_count_space_prod_eq:
   795   fixes A :: "('a \<times> 'b) set"
   795   fixes A :: "('a \<times> 'b) set"
   796   assumes A: "A \<in> sets (count_space UNIV \<Otimes>\<^sub>M count_space UNIV)" (is "A \<in> sets (?A \<Otimes>\<^sub>M ?B)")
   796   assumes A: "A \<in> sets (count_space UNIV \<Otimes>\<^sub>M count_space UNIV)" (is "A \<in> sets (?A \<Otimes>\<^sub>M ?B)")
   797   shows "emeasure (?A \<Otimes>\<^sub>M ?B) A = emeasure (count_space UNIV) A"
   797   shows "emeasure (?A \<Otimes>\<^sub>M ?B) A = emeasure (count_space UNIV) A"
   798 proof -
   798 proof%unimportant -
   799   { fix A :: "('a \<times> 'b) set" assume "countable A"
   799   { fix A :: "('a \<times> 'b) set" assume "countable A"
   800     then have "emeasure (?A \<Otimes>\<^sub>M ?B) (\<Union>a\<in>A. {a}) = (\<integral>\<^sup>+a. emeasure (?A \<Otimes>\<^sub>M ?B) {a} \<partial>count_space A)"
   800     then have "emeasure (?A \<Otimes>\<^sub>M ?B) (\<Union>a\<in>A. {a}) = (\<integral>\<^sup>+a. emeasure (?A \<Otimes>\<^sub>M ?B) {a} \<partial>count_space A)"
   801       by (intro emeasure_UN_countable) (auto simp: sets_Pair disjoint_family_on_def)
   801       by (intro emeasure_UN_countable) (auto simp: sets_Pair disjoint_family_on_def)
   802     also have "\<dots> = (\<integral>\<^sup>+a. indicator A a \<partial>count_space UNIV)"
   802     also have "\<dots> = (\<integral>\<^sup>+a. indicator A a \<partial>count_space UNIV)"
   803       by (subst nn_integral_count_space_indicator) auto
   803       by (subst nn_integral_count_space_indicator) auto
   820     finally show ?thesis
   820     finally show ?thesis
   821       using \<open>infinite C\<close> \<open>infinite A\<close> by (simp add: top_unique)
   821       using \<open>infinite C\<close> \<open>infinite A\<close> by (simp add: top_unique)
   822   qed
   822   qed
   823 qed
   823 qed
   824 
   824 
   825 lemma nn_integral_count_space_prod_eq:
   825 lemma%unimportant nn_integral_count_space_prod_eq:
   826   "nn_integral (count_space UNIV \<Otimes>\<^sub>M count_space UNIV) f = nn_integral (count_space UNIV) f"
   826   "nn_integral (count_space UNIV \<Otimes>\<^sub>M count_space UNIV) f = nn_integral (count_space UNIV) f"
   827     (is "nn_integral ?P f = _")
   827     (is "nn_integral ?P f = _")
   828 proof cases
   828 proof cases
   829   assume cntbl: "countable {x. f x \<noteq> 0}"
   829   assume cntbl: "countable {x. f x \<noteq> 0}"
   830   have [simp]: "\<And>x. card ({x} \<inter> {x. f x \<noteq> 0}) = (indicator {x. f x \<noteq> 0} x::ennreal)"
   830   have [simp]: "\<And>x. card ({x} \<inter> {x. f x \<noteq> 0}) = (indicator {x. f x \<noteq> 0} x::ennreal)"
   872     using \<open>infinite C\<close> by (simp add: nn_integral_cmult ennreal_mult_top)
   872     using \<open>infinite C\<close> by (simp add: nn_integral_cmult ennreal_mult_top)
   873   ultimately show ?thesis
   873   ultimately show ?thesis
   874     by (simp add: top_unique)
   874     by (simp add: top_unique)
   875 qed
   875 qed
   876 
   876 
   877 lemma pair_measure_density:
   877 lemma%important pair_measure_density:
   878   assumes f: "f \<in> borel_measurable M1"
   878   assumes f: "f \<in> borel_measurable M1"
   879   assumes g: "g \<in> borel_measurable M2"
   879   assumes g: "g \<in> borel_measurable M2"
   880   assumes "sigma_finite_measure M2" "sigma_finite_measure (density M2 g)"
   880   assumes "sigma_finite_measure M2" "sigma_finite_measure (density M2 g)"
   881   shows "density M1 f \<Otimes>\<^sub>M density M2 g = density (M1 \<Otimes>\<^sub>M M2) (\<lambda>(x,y). f x * g y)" (is "?L = ?R")
   881   shows "density M1 f \<Otimes>\<^sub>M density M2 g = density (M1 \<Otimes>\<^sub>M M2) (\<lambda>(x,y). f x * g y)" (is "?L = ?R")
   882 proof (rule measure_eqI)
   882 proof%unimportant (rule measure_eqI)
   883   interpret M2: sigma_finite_measure M2 by fact
   883   interpret M2: sigma_finite_measure M2 by fact
   884   interpret D2: sigma_finite_measure "density M2 g" by fact
   884   interpret D2: sigma_finite_measure "density M2 g" by fact
   885 
   885 
   886   fix A assume A: "A \<in> sets ?L"
   886   fix A assume A: "A \<in> sets ?L"
   887   with f g have "(\<integral>\<^sup>+ x. f x * \<integral>\<^sup>+ y. g y * indicator A (x, y) \<partial>M2 \<partial>M1) =
   887   with f g have "(\<integral>\<^sup>+ x. f x * \<integral>\<^sup>+ y. g y * indicator A (x, y) \<partial>M2 \<partial>M1) =
   892     by (simp add: D2.emeasure_pair_measure emeasure_density nn_integral_density
   892     by (simp add: D2.emeasure_pair_measure emeasure_density nn_integral_density
   893                   M2.nn_integral_fst[symmetric]
   893                   M2.nn_integral_fst[symmetric]
   894              cong: nn_integral_cong)
   894              cong: nn_integral_cong)
   895 qed simp
   895 qed simp
   896 
   896 
   897 lemma sigma_finite_measure_distr:
   897 lemma%unimportant sigma_finite_measure_distr:
   898   assumes "sigma_finite_measure (distr M N f)" and f: "f \<in> measurable M N"
   898   assumes "sigma_finite_measure (distr M N f)" and f: "f \<in> measurable M N"
   899   shows "sigma_finite_measure M"
   899   shows "sigma_finite_measure M"
   900 proof -
   900 proof -
   901   interpret sigma_finite_measure "distr M N f" by fact
   901   interpret sigma_finite_measure "distr M N f" by fact
   902   from sigma_finite_countable guess A .. note A = this
   902   from sigma_finite_countable guess A .. note A = this
   907       by (intro exI[of _ "(\<lambda>a. f -` a \<inter> space M) ` A"])
   907       by (intro exI[of _ "(\<lambda>a. f -` a \<inter> space M) ` A"])
   908          (auto simp: emeasure_distr set_eq_iff subset_eq intro: measurable_space)
   908          (auto simp: emeasure_distr set_eq_iff subset_eq intro: measurable_space)
   909   qed
   909   qed
   910 qed
   910 qed
   911 
   911 
   912 lemma pair_measure_distr:
   912 lemma%unimportant pair_measure_distr:
   913   assumes f: "f \<in> measurable M S" and g: "g \<in> measurable N T"
   913   assumes f: "f \<in> measurable M S" and g: "g \<in> measurable N T"
   914   assumes "sigma_finite_measure (distr N T g)"
   914   assumes "sigma_finite_measure (distr N T g)"
   915   shows "distr M S f \<Otimes>\<^sub>M distr N T g = distr (M \<Otimes>\<^sub>M N) (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). (f x, g y))" (is "?P = ?D")
   915   shows "distr M S f \<Otimes>\<^sub>M distr N T g = distr (M \<Otimes>\<^sub>M N) (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). (f x, g y))" (is "?P = ?D")
   916 proof (rule measure_eqI)
   916 proof (rule measure_eqI)
   917   interpret T: sigma_finite_measure "distr N T g" by fact
   917   interpret T: sigma_finite_measure "distr N T g" by fact
   922     by (auto simp add: N.emeasure_pair_measure_alt space_pair_measure emeasure_distr
   922     by (auto simp add: N.emeasure_pair_measure_alt space_pair_measure emeasure_distr
   923                        T.emeasure_pair_measure_alt nn_integral_distr
   923                        T.emeasure_pair_measure_alt nn_integral_distr
   924              intro!: nn_integral_cong arg_cong[where f="emeasure N"])
   924              intro!: nn_integral_cong arg_cong[where f="emeasure N"])
   925 qed simp
   925 qed simp
   926 
   926 
   927 lemma pair_measure_eqI:
   927 lemma%important pair_measure_eqI:
   928   assumes "sigma_finite_measure M1" "sigma_finite_measure M2"
   928   assumes "sigma_finite_measure M1" "sigma_finite_measure M2"
   929   assumes sets: "sets (M1 \<Otimes>\<^sub>M M2) = sets M"
   929   assumes sets: "sets (M1 \<Otimes>\<^sub>M M2) = sets M"
   930   assumes emeasure: "\<And>A B. A \<in> sets M1 \<Longrightarrow> B \<in> sets M2 \<Longrightarrow> emeasure M1 A * emeasure M2 B = emeasure M (A \<times> B)"
   930   assumes emeasure: "\<And>A B. A \<in> sets M1 \<Longrightarrow> B \<in> sets M2 \<Longrightarrow> emeasure M1 A * emeasure M2 B = emeasure M (A \<times> B)"
   931   shows "M1 \<Otimes>\<^sub>M M2 = M"
   931   shows "M1 \<Otimes>\<^sub>M M2 = M"
   932 proof -
   932 proof%unimportant -
   933   interpret M1: sigma_finite_measure M1 by fact
   933   interpret M1: sigma_finite_measure M1 by fact
   934   interpret M2: sigma_finite_measure M2 by fact
   934   interpret M2: sigma_finite_measure M2 by fact
   935   interpret pair_sigma_finite M1 M2 ..
   935   interpret pair_sigma_finite M1 M2 ..
   936   from sigma_finite_up_in_pair_measure_generator guess F :: "nat \<Rightarrow> ('a \<times> 'b) set" .. note F = this
   936   from sigma_finite_up_in_pair_measure_generator guess F :: "nat \<Rightarrow> ('a \<times> 'b) set" .. note F = this
   937   let ?E = "{a \<times> b |a b. a \<in> sets M1 \<and> b \<in> sets M2}"
   937   let ?E = "{a \<times> b |a b. a \<in> sets M1 \<and> b \<in> sets M2}"
   957     finally show "emeasure ?P X = emeasure M X"
   957     finally show "emeasure ?P X = emeasure M X"
   958       by simp
   958       by simp
   959   qed
   959   qed
   960 qed
   960 qed
   961 
   961 
   962 lemma sets_pair_countable:
   962 lemma%important sets_pair_countable:
   963   assumes "countable S1" "countable S2"
   963   assumes "countable S1" "countable S2"
   964   assumes M: "sets M = Pow S1" and N: "sets N = Pow S2"
   964   assumes M: "sets M = Pow S1" and N: "sets N = Pow S2"
   965   shows "sets (M \<Otimes>\<^sub>M N) = Pow (S1 \<times> S2)"
   965   shows "sets (M \<Otimes>\<^sub>M N) = Pow (S1 \<times> S2)"
   966 proof auto
   966 proof%unimportant auto
   967   fix x a b assume x: "x \<in> sets (M \<Otimes>\<^sub>M N)" "(a, b) \<in> x"
   967   fix x a b assume x: "x \<in> sets (M \<Otimes>\<^sub>M N)" "(a, b) \<in> x"
   968   from sets.sets_into_space[OF x(1)] x(2)
   968   from sets.sets_into_space[OF x(1)] x(2)
   969     sets_eq_imp_space_eq[of N "count_space S2"] sets_eq_imp_space_eq[of M "count_space S1"] M N
   969     sets_eq_imp_space_eq[of N "count_space S2"] sets_eq_imp_space_eq[of M "count_space S1"] M N
   970   show "a \<in> S1" "b \<in> S2"
   970   show "a \<in> S1" "b \<in> S2"
   971     by (auto simp: space_pair_measure)
   971     by (auto simp: space_pair_measure)
   978     using X
   978     using X
   979     by (safe intro!: sets.countable_UN' \<open>countable X\<close> subsetI pair_measureI) (auto simp: M N)
   979     by (safe intro!: sets.countable_UN' \<open>countable X\<close> subsetI pair_measureI) (auto simp: M N)
   980   finally show "X \<in> sets (M \<Otimes>\<^sub>M N)" .
   980   finally show "X \<in> sets (M \<Otimes>\<^sub>M N)" .
   981 qed
   981 qed
   982 
   982 
   983 lemma pair_measure_countable:
   983 lemma%important pair_measure_countable:
   984   assumes "countable S1" "countable S2"
   984   assumes "countable S1" "countable S2"
   985   shows "count_space S1 \<Otimes>\<^sub>M count_space S2 = count_space (S1 \<times> S2)"
   985   shows "count_space S1 \<Otimes>\<^sub>M count_space S2 = count_space (S1 \<times> S2)"
   986 proof (rule pair_measure_eqI)
   986 proof%unimportant (rule pair_measure_eqI)
   987   show "sigma_finite_measure (count_space S1)" "sigma_finite_measure (count_space S2)"
   987   show "sigma_finite_measure (count_space S1)" "sigma_finite_measure (count_space S2)"
   988     using assms by (auto intro!: sigma_finite_measure_count_space_countable)
   988     using assms by (auto intro!: sigma_finite_measure_count_space_countable)
   989   show "sets (count_space S1 \<Otimes>\<^sub>M count_space S2) = sets (count_space (S1 \<times> S2))"
   989   show "sets (count_space S1 \<Otimes>\<^sub>M count_space S2) = sets (count_space (S1 \<times> S2))"
   990     by (subst sets_pair_countable[OF assms]) auto
   990     by (subst sets_pair_countable[OF assms]) auto
   991 next
   991 next
   993   then show "emeasure (count_space S1) A * emeasure (count_space S2) B =
   993   then show "emeasure (count_space S1) A * emeasure (count_space S2) B =
   994     emeasure (count_space (S1 \<times> S2)) (A \<times> B)"
   994     emeasure (count_space (S1 \<times> S2)) (A \<times> B)"
   995     by (subst (1 2 3) emeasure_count_space) (auto simp: finite_cartesian_product_iff ennreal_mult_top ennreal_top_mult)
   995     by (subst (1 2 3) emeasure_count_space) (auto simp: finite_cartesian_product_iff ennreal_mult_top ennreal_top_mult)
   996 qed
   996 qed
   997 
   997 
   998 lemma nn_integral_fst_count_space:
   998 lemma%important nn_integral_fst_count_space:
   999   "(\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. f (x, y) \<partial>count_space UNIV \<partial>count_space UNIV) = integral\<^sup>N (count_space UNIV) f"
   999   "(\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. f (x, y) \<partial>count_space UNIV \<partial>count_space UNIV) = integral\<^sup>N (count_space UNIV) f"
  1000   (is "?lhs = ?rhs")
  1000   (is "?lhs = ?rhs")
  1001 proof(cases)
  1001 proof%unimportant(cases)
  1002   assume *: "countable {xy. f xy \<noteq> 0}"
  1002   assume *: "countable {xy. f xy \<noteq> 0}"
  1003   let ?A = "fst ` {xy. f xy \<noteq> 0}"
  1003   let ?A = "fst ` {xy. f xy \<noteq> 0}"
  1004   let ?B = "snd ` {xy. f xy \<noteq> 0}"
  1004   let ?B = "snd ` {xy. f xy \<noteq> 0}"
  1005   from * have [simp]: "countable ?A" "countable ?B" by(rule countable_image)+
  1005   from * have [simp]: "countable ?A" "countable ?B" by(rule countable_image)+
  1006   have "?lhs = (\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. f (x, y) \<partial>count_space UNIV \<partial>count_space ?A)"
  1006   have "?lhs = (\<integral>\<^sup>+ x. \<integral>\<^sup>+ y. f (x, y) \<partial>count_space UNIV \<partial>count_space ?A)"
  1086       (simp_all add: inj_on_def split_def)
  1086       (simp_all add: inj_on_def split_def)
  1087   also have "\<dots> = ?rhs" by(rule nn_integral_count_space_eq) auto
  1087   also have "\<dots> = ?rhs" by(rule nn_integral_count_space_eq) auto
  1088   finally show ?thesis .
  1088   finally show ?thesis .
  1089 qed
  1089 qed
  1090 
  1090 
  1091 lemma measurable_pair_measure_countable1:
  1091 lemma%unimportant measurable_pair_measure_countable1:
  1092   assumes "countable A"
  1092   assumes "countable A"
  1093   and [measurable]: "\<And>x. x \<in> A \<Longrightarrow> (\<lambda>y. f (x, y)) \<in> measurable N K"
  1093   and [measurable]: "\<And>x. x \<in> A \<Longrightarrow> (\<lambda>y. f (x, y)) \<in> measurable N K"
  1094   shows "f \<in> measurable (count_space A \<Otimes>\<^sub>M N) K"
  1094   shows "f \<in> measurable (count_space A \<Otimes>\<^sub>M N) K"
  1095 using _ _ assms(1)
  1095 using _ _ assms(1)
  1096 by(rule measurable_compose_countable'[where f="\<lambda>a b. f (a, snd b)" and g=fst and I=A, simplified])simp_all
  1096 by(rule measurable_compose_countable'[where f="\<lambda>a b. f (a, snd b)" and g=fst and I=A, simplified])simp_all
  1097 
  1097 
  1098 subsection \<open>Product of Borel spaces\<close>
  1098 subsection%important \<open>Product of Borel spaces\<close>
  1099 
  1099 
  1100 lemma borel_Times:
  1100 lemma%important borel_Times:
  1101   fixes A :: "'a::topological_space set" and B :: "'b::topological_space set"
  1101   fixes A :: "'a::topological_space set" and B :: "'b::topological_space set"
  1102   assumes A: "A \<in> sets borel" and B: "B \<in> sets borel"
  1102   assumes A: "A \<in> sets borel" and B: "B \<in> sets borel"
  1103   shows "A \<times> B \<in> sets borel"
  1103   shows "A \<times> B \<in> sets borel"
  1104 proof -
  1104 proof%unimportant -
  1105   have "A \<times> B = (A\<times>UNIV) \<inter> (UNIV \<times> B)"
  1105   have "A \<times> B = (A\<times>UNIV) \<inter> (UNIV \<times> B)"
  1106     by auto
  1106     by auto
  1107   moreover
  1107   moreover
  1108   { have "A \<in> sigma_sets UNIV {S. open S}" using A by (simp add: sets_borel)
  1108   { have "A \<in> sigma_sets UNIV {S. open S}" using A by (simp add: sets_borel)
  1109     then have "A\<times>UNIV \<in> sets borel"
  1109     then have "A\<times>UNIV \<in> sets borel"
  1144     qed simp }
  1144     qed simp }
  1145   ultimately show ?thesis
  1145   ultimately show ?thesis
  1146     by auto
  1146     by auto
  1147 qed
  1147 qed
  1148 
  1148 
  1149 lemma finite_measure_pair_measure:
  1149 lemma%unimportant finite_measure_pair_measure:
  1150   assumes "finite_measure M" "finite_measure N"
  1150   assumes "finite_measure M" "finite_measure N"
  1151   shows "finite_measure (N  \<Otimes>\<^sub>M M)"
  1151   shows "finite_measure (N  \<Otimes>\<^sub>M M)"
  1152 proof (rule finite_measureI)
  1152 proof (rule finite_measureI)
  1153   interpret M: finite_measure M by fact
  1153   interpret M: finite_measure M by fact
  1154   interpret N: finite_measure N by fact
  1154   interpret N: finite_measure N by fact