src/HOL/Complex.thy
changeset 30960 fec1a04b7220
parent 30729 461ee3e49ad3
child 31021 53642251a04f
equal deleted inserted replaced
30959:458e55fd0a33 30960:fec1a04b7220
   157 end
   157 end
   158 
   158 
   159 
   159 
   160 subsection {* Exponentiation *}
   160 subsection {* Exponentiation *}
   161 
   161 
   162 instantiation complex :: recpower
   162 instance complex :: recpower ..
   163 begin
       
   164 
       
   165 primrec power_complex where
       
   166   "z ^ 0     = (1\<Colon>complex)"
       
   167 | "z ^ Suc n = (z\<Colon>complex) * z ^ n"
       
   168 
       
   169 instance proof
       
   170 qed simp_all
       
   171 
       
   172 declare power_complex.simps [simp del]
       
   173 
       
   174 end
       
   175 
   163 
   176 
   164 
   177 subsection {* Numerals and Arithmetic *}
   165 subsection {* Numerals and Arithmetic *}
   178 
   166 
   179 instantiation complex :: number_ring
   167 instantiation complex :: number_ring