--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CCL/Fix.ML Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,202 @@
+(* Title: CCL/fix
+ ID: $Id$
+ Author: Martin Coen, Cambridge University Computer Laboratory
+ Copyright 1993 University of Cambridge
+
+For fix.thy.
+*)
+
+open Fix;
+
+val prems = goalw Fix.thy [INCL_def]
+ "[| !!x.P(x) <-> Q(x) |] ==> INCL(%x.P(x)) <-> INCL(%x.Q(x))";
+by (REPEAT (ares_tac ([refl] @ FOL_congs @ set_congs @ prems) 1));
+val INCL_cong = result();
+
+val fix_congs = [INCL_cong] @ ccl_mk_congs Fix.thy ["napply"];
+
+(*** Fixed Point Induction ***)
+
+val [base,step,incl] = goalw Fix.thy [INCL_def]
+ "[| P(bot); !!x.P(x) ==> P(f(x)); INCL(P) |] ==> P(fix(f))";
+br (incl RS spec RS mp) 1;
+by (rtac (Nat_ind RS ballI) 1 THEN atac 1);
+by (ALLGOALS (SIMP_TAC term_ss));
+by (REPEAT (ares_tac [base,step] 1));
+val fix_ind = result();
+
+(*** Inclusive Predicates ***)
+
+val prems = goalw Fix.thy [INCL_def]
+ "INCL(P) <-> (ALL f. (ALL n:Nat. P(f ^ n ` bot)) --> P(fix(f)))";
+br iff_refl 1;
+val inclXH = result();
+
+val prems = goal Fix.thy
+ "[| !!f.ALL n:Nat.P(f^n`bot) ==> P(fix(f)) |] ==> INCL(%x.P(x))";
+by (fast_tac (term_cs addIs (prems @ [XH_to_I inclXH])) 1);
+val inclI = result();
+
+val incl::prems = goal Fix.thy
+ "[| INCL(P); !!n.n:Nat ==> P(f^n`bot) |] ==> P(fix(f))";
+by (fast_tac (term_cs addIs ([ballI RS (incl RS (XH_to_D inclXH) RS spec RS mp)]
+ @ prems)) 1);
+val inclD = result();
+
+val incl::prems = goal Fix.thy
+ "[| INCL(P); (ALL n:Nat.P(f^n`bot))-->P(fix(f)) ==> R |] ==> R";
+by (fast_tac (term_cs addIs ([incl RS inclD] @ prems)) 1);
+val inclE = result();
+
+val fix_ss = term_ss addcongs fix_congs;
+
+(*** Lemmas for Inclusive Predicates ***)
+
+goal Fix.thy "INCL(%x.~ a(x) [= t)";
+br inclI 1;
+bd bspec 1;
+br zeroT 1;
+be contrapos 1;
+br po_trans 1;
+ba 2;
+br (napplyBzero RS ssubst) 1;
+by (rtac po_cong 1 THEN rtac po_bot 1);
+val npo_INCL = result();
+
+val prems = goal Fix.thy "[| INCL(P); INCL(Q) |] ==> INCL(%x.P(x) & Q(x))";
+by (fast_tac (set_cs addSIs ([inclI] @ (prems RL [inclD]))) 1);;
+val conj_INCL = result();
+
+val prems = goal Fix.thy "[| !!a.INCL(P(a)) |] ==> INCL(%x.ALL a.P(a,x))";
+by (fast_tac (set_cs addSIs ([inclI] @ (prems RL [inclD]))) 1);;
+val all_INCL = result();
+
+val prems = goal Fix.thy "[| !!a.a:A ==> INCL(P(a)) |] ==> INCL(%x.ALL a:A.P(a,x))";
+by (fast_tac (set_cs addSIs ([inclI] @ (prems RL [inclD]))) 1);;
+val ball_INCL = result();
+
+goal Fix.thy "INCL(%x.a(x) = b(x)::'a::prog)";
+by (SIMP_TAC (fix_ss addrews [eq_iff]) 1);
+by (REPEAT (resolve_tac [conj_INCL,po_INCL] 1));
+val eq_INCL = result();
+
+(*** Derivation of Reachability Condition ***)
+
+(* Fixed points of idgen *)
+
+goal Fix.thy "idgen(fix(idgen)) = fix(idgen)";
+br (fixB RS sym) 1;
+val fix_idgenfp = result();
+
+goalw Fix.thy [idgen_def] "idgen(lam x.x) = lam x.x";
+by (SIMP_TAC term_ss 1);
+br (term_case RS allI) 1;
+by (ALLGOALS (SIMP_TAC term_ss));
+val id_idgenfp = result();
+
+(* All fixed points are lam-expressions *)
+
+val [prem] = goal Fix.thy "idgen(d) = d ==> d = lam x.?f(x)";
+br (prem RS subst) 1;
+bw idgen_def;
+br refl 1;
+val idgenfp_lam = result();
+
+(* Lemmas for rewriting fixed points of idgen *)
+
+val prems = goalw Fix.thy [idgen_def]
+ "[| a = b; a ` t = u |] ==> b ` t = u";
+by (SIMP_TAC (term_ss addrews (prems RL [sym])) 1);
+val l_lemma= result();
+
+val idgen_lemmas =
+ let fun mk_thm s = prove_goalw Fix.thy [idgen_def] s
+ (fn [prem] => [rtac (prem RS l_lemma) 1,SIMP_TAC term_ss 1])
+ in map mk_thm
+ [ "idgen(d) = d ==> d ` bot = bot",
+ "idgen(d) = d ==> d ` true = true",
+ "idgen(d) = d ==> d ` false = false",
+ "idgen(d) = d ==> d ` <a,b> = <d ` a,d ` b>",
+ "idgen(d) = d ==> d ` (lam x.f(x)) = lam x.d ` f(x)"]
+ end;
+
+(* Proof of Reachability law - show that fix and lam x.x both give LEAST fixed points
+ of idgen and hence are they same *)
+
+val [p1,p2,p3] = goal CCL.thy
+ "[| ALL x.t ` x [= u ` x; EX f.t=lam x.f(x); EX f.u=lam x.f(x) |] ==> t [= u";
+br (p2 RS cond_eta RS ssubst) 1;
+br (p3 RS cond_eta RS ssubst) 1;
+br (p1 RS (po_lam RS iffD2)) 1;
+val po_eta = result();
+
+val [prem] = goalw Fix.thy [idgen_def] "idgen(d) = d ==> d = lam x.?f(x)";
+br (prem RS subst) 1;
+br refl 1;
+val po_eta_lemma = result();
+
+val [prem] = goal Fix.thy
+ "idgen(d) = d ==> \
+\ {p.EX a b.p=<a,b> & (EX t.a=fix(idgen) ` t & b = d ` t)} <= \
+\ POgen({p.EX a b.p=<a,b> & (EX t.a=fix(idgen) ` t & b = d ` t)})";
+by (REPEAT (step_tac term_cs 1));
+by (term_case_tac "t" 1);
+by (ALLGOALS (SIMP_TAC (term_ss addrews (POgenXH::([prem,fix_idgenfp] RL idgen_lemmas)))));
+by (ALLGOALS (fast_tac set_cs));
+val lemma1 = result();
+
+val [prem] = goal Fix.thy
+ "idgen(d) = d ==> fix(idgen) [= d";
+br (allI RS po_eta) 1;
+br (lemma1 RSN(2,po_coinduct)) 1;
+by (ALLGOALS (fast_tac (term_cs addIs [prem,po_eta_lemma,fix_idgenfp])));
+val fix_least_idgen = result();
+
+val [prem] = goal Fix.thy
+ "idgen(d) = d ==> \
+\ {p.EX a b.p=<a,b> & b = d ` a} <= POgen({p.EX a b.p=<a,b> & b = d ` a})";
+by (REPEAT (step_tac term_cs 1));
+by (term_case_tac "a" 1);
+by (ALLGOALS (SIMP_TAC (term_ss addrews (POgenXH::([prem] RL idgen_lemmas)))));
+by (ALLGOALS (fast_tac set_cs));
+val lemma2 = result();
+
+val [prem] = goal Fix.thy
+ "idgen(d) = d ==> lam x.x [= d";
+br (allI RS po_eta) 1;
+br (lemma2 RSN(2,po_coinduct)) 1;
+by (SIMP_TAC term_ss 1);
+by (ALLGOALS (fast_tac (term_cs addIs [prem,po_eta_lemma,fix_idgenfp])));
+val id_least_idgen = result();
+
+goal Fix.thy "fix(idgen) = lam x.x";
+by (fast_tac (term_cs addIs [eq_iff RS iffD2,
+ id_idgenfp RS fix_least_idgen,
+ fix_idgenfp RS id_least_idgen]) 1);
+val reachability = result();
+
+(********)
+
+val [prem] = goal Fix.thy "f = lam x.x ==> f`t = t";
+br (prem RS sym RS subst) 1;
+br applyB 1;
+val id_apply = result();
+
+val prems = goal Fix.thy
+ "[| P(bot); P(true); P(false); \
+\ !!x y.[| P(x); P(y) |] ==> P(<x,y>); \
+\ !!u.(!!x.P(u(x))) ==> P(lam x.u(x)); INCL(P) |] ==> \
+\ P(t)";
+br (reachability RS id_apply RS subst) 1;
+by (res_inst_tac [("x","t")] spec 1);
+br fix_ind 1;
+bw idgen_def;
+by (REPEAT_SOME (ares_tac [allI]));
+br (applyBbot RS ssubst) 1;
+brs prems 1;
+br (applyB RS ssubst )1;
+by (res_inst_tac [("t","xa")] term_case 1);
+by (ALLGOALS (SIMP_TAC term_ss));
+by (ALLGOALS (fast_tac (term_cs addIs ([all_INCL,INCL_subst] @ prems))));
+val term_ind = result();
+