src/Pure/term.ML
changeset 0 a5a9c433f639
child 40 3f9f8395519e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/term.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,549 @@
+(*  Title: 	term.ML
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   Cambridge University 1992
+*)
+
+
+(*Simply typed lambda-calculus: types, terms, and basic operations*)
+
+
+(*Indexnames can be quickly renamed by adding an offset to the integer part,
+  for resolution.*)
+type indexname = string*int;
+
+(* Types are classified by classes. *)
+type class = string;
+type sort  = class list;
+
+(* The sorts attached to TFrees and TVars specify the sort of that variable *)
+datatype typ = Type  of string * typ list
+             | TFree of string * sort
+	     | TVar  of indexname * sort;
+
+infixr 5 -->;
+fun S --> T = Type("fun",[S,T]);
+
+(*handy for multiple args: [T1,...,Tn]--->T  gives  T1-->(T2--> ... -->T)*)
+infixr --->;
+val op ---> = foldr (op -->);
+
+
+(*terms.  Bound variables are indicated by depth number.
+  Free variables, (scheme) variables and constants have names.
+  An term is "closed" if there every bound variable of level "lev"
+  is enclosed by at least "lev" abstractions. 
+
+  It is possible to create meaningless terms containing loose bound vars
+  or type mismatches.  But such terms are not allowed in rules. *)
+
+
+
+infix 9 $;  (*application binds tightly!*)
+datatype term = 
+    Const of string * typ
+  | Free  of string * typ 
+  | Var   of indexname * typ
+  | Bound of int
+  | Abs   of string*typ*term
+  | op $  of term*term;
+
+
+(*For errors involving type mismatches*)
+exception TYPE of string * typ list * term list;
+
+(*For system errors involving terms*)
+exception TERM of string * term list;
+
+
+(*Note variable naming conventions!
+    a,b,c: string
+    f,g,h: functions (including terms of function type)
+    i,j,m,n: int
+    t,u: term
+    v,w: indexnames
+    x,y: any
+    A,B,C: term (denoting formulae)
+    T,U: typ
+*)
+
+
+(** Discriminators **)
+
+fun is_Const (Const _) = true
+  | is_Const _ = false;
+
+fun is_Free (Free _) = true
+  | is_Free _ = false;
+
+fun is_Var (Var _) = true
+  | is_Var _ = false;
+
+fun is_TVar (TVar _) = true
+  | is_TVar _ = false;
+
+(** Destructors **)
+
+fun dest_Const (Const x) =  x
+  | dest_Const t = raise TERM("dest_Const", [t]);
+
+fun dest_Free (Free x) =  x
+  | dest_Free t = raise TERM("dest_Free", [t]);
+
+fun dest_Var (Var x) =  x
+  | dest_Var t = raise TERM("dest_Var", [t]);
+
+
+(* maps  [T1,...,Tn]--->T  to the list  [T1,T2,...,Tn]*)
+fun binder_types (Type("fun",[S,T])) = S :: binder_types T
+  | binder_types _   =  [];
+
+(* maps  [T1,...,Tn]--->T  to T*)
+fun body_type (Type("fun",[S,T])) = body_type T
+  | body_type T   =  T;
+
+(* maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T)  *)
+fun strip_type T : typ list * typ =
+  (binder_types T, body_type T);
+
+
+(*Compute the type of the term, checking that combinations are well-typed
+  Ts = [T0,T1,...] holds types of bound variables 0, 1, ...*)
+fun type_of1 (Ts, Const (_,T)) = T
+  | type_of1 (Ts, Free  (_,T)) = T
+  | type_of1 (Ts, Bound i) = (nth_elem (i,Ts)  
+  	handle LIST _ => raise TYPE("type_of: bound variable", [], [Bound i]))
+  | type_of1 (Ts, Var (_,T)) = T
+  | type_of1 (Ts, Abs (_,T,body)) = T --> type_of1(T::Ts, body)
+  | type_of1 (Ts, f$u) = 
+      let val U = type_of1(Ts,u)
+          and T = type_of1(Ts,f)
+      in case T of
+	    Type("fun",[T1,T2]) =>
+	      if T1=U then T2  else raise TYPE
+	         ("type_of: type mismatch in application", [T1,U], [f$u])
+	  | _ => raise TYPE ("type_of: Rator must have function type",
+	                        [T,U], [f$u])
+      end;
+
+
+fun type_of t : typ = type_of1 ([],t);
+
+(*Determines the type of a term, with minimal checking*)
+fun fastype_of(Ts, f$u) = (case fastype_of(Ts,f) of
+	Type("fun",[_,T]) => T
+	| _ => raise TERM("fastype_of: expected function type", [f$u]))
+  | fastype_of(_, Const (_,T)) = T
+  | fastype_of(_, Free (_,T)) = T
+  | fastype_of(Ts, Bound i) = (nth_elem(i,Ts)
+  	 handle LIST _ => raise TERM("fastype_of: Bound", [Bound i]))
+  | fastype_of(_, Var (_,T)) = T 
+  | fastype_of(Ts, Abs (_,T,u)) = T --> fastype_of(T::Ts, u);
+
+
+(* maps  (x1,...,xn)t   to   t  *)
+fun strip_abs_body (Abs(_,_,t))  =  strip_abs_body t  
+  | strip_abs_body u  =  u;
+
+
+(* maps  (x1,...,xn)t   to   [x1, ..., xn]  *)
+fun strip_abs_vars (Abs(a,T,t))  =  (a,T) :: strip_abs_vars t 
+  | strip_abs_vars u  =  [] : (string*typ) list;
+
+
+fun strip_qnt_body qnt =
+let fun strip(tm as Const(c,_)$Abs(_,_,t)) = if c=qnt then strip t else tm
+      | strip t = t
+in strip end;
+
+fun strip_qnt_vars qnt =
+let fun strip(Const(c,_)$Abs(a,T,t)) = if c=qnt then (a,T)::strip t else []
+      | strip t  =  [] : (string*typ) list
+in strip end;
+
+
+(* maps   (f, [t1,...,tn])  to  f(t1,...,tn) *)
+val list_comb : term * term list -> term = foldl (op $);
+
+
+(* maps   f(t1,...,tn)  to  (f, [t1,...,tn]) ; naturally tail-recursive*)
+fun strip_comb u : term * term list = 
+    let fun stripc (f$t, ts) = stripc (f, t::ts)
+        |   stripc  x =  x 
+    in  stripc(u,[])  end;
+
+
+(* maps   f(t1,...,tn)  to  f , which is never a combination *)
+fun head_of (f$t) = head_of f
+  | head_of u = u;
+
+
+(*Number of atoms and abstractions in a term*)
+fun size_of_term (Abs (_,_,body)) = 1 + size_of_term body
+  | size_of_term (f$t) = size_of_term f  +  size_of_term t
+  | size_of_term _ = 1;
+
+ 
+(* apply a function to all types in a term *)
+fun map_term_types f =
+let fun map(Const(a,T)) = Const(a, f T)
+      | map(Free(a,T)) = Free(a, f T)
+      | map(Var(v,T)) = Var(v, f T)
+      | map(t as Bound _)  = t
+      | map(Abs(a,T,t)) = Abs(a, f T, map t)
+      | map(f$t) = map f $ map t;
+in map end;
+
+(* iterate a function over all types in a term *)
+fun it_term_types f =
+let fun iter(Const(_,T), a) = f(T,a)
+      | iter(Free(_,T), a) = f(T,a)
+      | iter(Var(_,T), a) = f(T,a)
+      | iter(Abs(_,T,t), a) = iter(t,f(T,a))
+      | iter(f$u, a) = iter(f, iter(u, a))
+      | iter(Bound _, a) = a
+in iter end
+
+
+(** Connectives of higher order logic **)
+
+val propT : typ = Type("prop",[]);
+
+val implies = Const("==>", propT-->propT-->propT);
+
+fun all T = Const("all", (T-->propT)-->propT);
+
+fun equals T = Const("==", T-->T-->propT);
+
+fun flexpair T = Const("=?=", T-->T-->propT);
+
+(* maps  !!x1...xn. t   to   t  *)
+fun strip_all_body (Const("all",_)$Abs(_,_,t))  =  strip_all_body t  
+  | strip_all_body t  =  t;
+
+(* maps  !!x1...xn. t   to   [x1, ..., xn]  *)
+fun strip_all_vars (Const("all",_)$Abs(a,T,t))  =
+		(a,T) :: strip_all_vars t 
+  | strip_all_vars t  =  [] : (string*typ) list;
+
+(*increments a term's non-local bound variables
+  required when moving a term within abstractions
+     inc is  increment for bound variables
+     lev is  level at which a bound variable is considered 'loose'*)
+fun incr_bv (inc, lev, u as Bound i) = if i>=lev then Bound(i+inc) else u 
+  | incr_bv (inc, lev, Abs(a,T,body)) =
+	Abs(a, T, incr_bv(inc,lev+1,body))
+  | incr_bv (inc, lev, f$t) = 
+      incr_bv(inc,lev,f) $ incr_bv(inc,lev,t)
+  | incr_bv (inc, lev, u) = u;
+
+fun incr_boundvars  0  t = t
+  | incr_boundvars inc t = incr_bv(inc,0,t);
+
+
+(*Accumulate all 'loose' bound vars referring to level 'lev' or beyond.
+   (Bound 0) is loose at level 0 *)
+fun add_loose_bnos (Bound i, lev, js) = 
+	if i<lev then js  else  (i-lev) :: js
+  | add_loose_bnos (Abs (_,_,t), lev, js) = add_loose_bnos (t, lev+1, js)
+  | add_loose_bnos (f$t, lev, js) =
+	add_loose_bnos (f, lev, add_loose_bnos (t, lev, js)) 
+  | add_loose_bnos (_, _, js) = js;
+
+fun loose_bnos t = add_loose_bnos (t, 0, []);
+
+(* loose_bvar(t,k) iff t contains a 'loose' bound variable referring to
+   level k or beyond. *)
+fun loose_bvar(Bound i,k) = i >= k
+  | loose_bvar(f$t, k) = loose_bvar(f,k) orelse loose_bvar(t,k)
+  | loose_bvar(Abs(_,_,t),k) = loose_bvar(t,k+1)
+  | loose_bvar _ = false;
+
+
+(*Substitute arguments for loose bound variables.
+  Beta-reduction of arg(n-1)...arg0 into t replacing (Bound i) with (argi).
+  Note that for ((x,y)c)(a,b), the bound vars in c are x=1 and y=0
+	and the appropriate call is  subst_bounds([b,a], c) .
+  Loose bound variables >=n are reduced by "n" to
+     compensate for the disappearance of lambdas.
+*)
+fun subst_bounds (args: term list, t) : term = 
+  let val n = length args;
+      fun subst (t as Bound i, lev) =
+ 	    if i<lev then  t    (*var is locally bound*)
+	    else  (case (drop (i-lev,args)) of
+		  []     => Bound(i-n)  (*loose: change it*)
+	        | arg::_ => incr_boundvars lev arg)
+	| subst (Abs(a,T,body), lev) = Abs(a, T,  subst(body,lev+1))
+	| subst (f$t, lev) =  subst(f,lev)  $  subst(t,lev)
+	| subst (t,lev) = t
+  in   case args of [] => t  | _ => subst (t,0)  end;
+
+(*beta-reduce if possible, else form application*)
+fun betapply (Abs(_,_,t), u) = subst_bounds([u],t)
+  | betapply (f,u) = f$u;
+
+(*Tests whether 2 terms are alpha-convertible and have same type.
+  Note that constants and Vars may have more than one type.*)
+infix aconv;
+fun (Const(a,T)) aconv (Const(b,U)) = a=b  andalso  T=U
+  | (Free(a,T)) aconv (Free(b,U)) = a=b  andalso  T=U
+  | (Var(v,T)) aconv (Var(w,U)) =   v=w  andalso  T=U
+  | (Bound i) aconv (Bound j)  =   i=j
+  | (Abs(_,T,t)) aconv (Abs(_,U,u)) = t aconv u  andalso  T=U
+  | (f$t) aconv (g$u) = (f aconv g) andalso (t aconv u)
+  | _ aconv _  =  false;
+
+(*are two term lists alpha-convertible in corresponding elements?*)
+fun aconvs ([],[]) = true
+  | aconvs (t::ts, u::us) = t aconv u andalso aconvs(ts,us)
+  | aconvs _ = false;
+
+(*A fast unification filter: true unless the two terms cannot be unified. 
+  Terms must be NORMAL.  Treats all Vars as distinct. *)
+fun could_unify (t,u) =
+  let fun matchrands (f$t, g$u) = could_unify(t,u) andalso  matchrands(f,g)
+	| matchrands _ = true
+  in case (head_of t , head_of u) of
+	(_, Var _) => true
+      | (Var _, _) => true
+      | (Const(a,_), Const(b,_)) =>  a=b andalso matchrands(t,u)
+      | (Free(a,_), Free(b,_)) =>  a=b andalso matchrands(t,u)
+      | (Bound i, Bound j) =>  i=j andalso matchrands(t,u)
+      | (Abs _, _) =>  true   (*because of possible eta equality*)
+      | (_, Abs _) =>  true
+      | _ => false
+  end;
+
+(*Substitute new for free occurrences of old in a term*)
+fun subst_free [] = (fn t=>t)
+  | subst_free pairs =
+      let fun substf u = 
+	    case gen_assoc (op aconv) (pairs, u) of
+		Some u' => u'
+	      | None => (case u of Abs(a,T,t) => Abs(a, T, substf t)
+				 | t$u' => substf t $ substf u'
+				 | _ => u)
+      in  substf  end;
+
+(*a total, irreflexive ordering on index names*)
+fun xless ((a,i), (b,j): indexname) = i<j  orelse  (i=j andalso a<b);
+
+
+(*Abstraction of the term "body" over its occurrences of v, 
+    which must contain no loose bound variables.
+  The resulting term is ready to become the body of an Abs.*)
+fun abstract_over (v,body) =
+  let fun abst (lev,u) = if (v aconv u) then (Bound lev) else
+      (case u of
+          Abs(a,T,t) => Abs(a, T, abst(lev+1, t))
+	| f$rand => abst(lev,f) $ abst(lev,rand)
+	| _ => u)
+  in  abst(0,body)  end;
+
+
+(*Form an abstraction over a free variable.*)
+fun absfree (a,T,body) = Abs(a, T, abstract_over (Free(a,T), body));
+
+(*Abstraction over a list of free variables*)
+fun list_abs_free ([ ] ,     t) = t
+  | list_abs_free ((a,T)::vars, t) = 
+      absfree(a, T, list_abs_free(vars,t));
+
+(*Quantification over a list of free variables*)
+fun list_all_free ([], t: term) = t
+  | list_all_free ((a,T)::vars, t) = 
+        (all T) $ (absfree(a, T, list_all_free(vars,t)));
+
+(*Quantification over a list of variables (already bound in body) *)
+fun list_all ([], t) = t
+  | list_all ((a,T)::vars, t) = 
+        (all T) $ (Abs(a, T, list_all(vars,t)));
+
+(*Replace the ATOMIC term ti by ui;    instl = [(t1,u1), ..., (tn,un)]. 
+  A simultaneous substitution:  [ (a,b), (b,a) ] swaps a and b.  *)
+fun subst_atomic [] t = t : term
+  | subst_atomic (instl: (term*term) list) t =
+      let fun subst (Abs(a,T,body)) = Abs(a, T, subst body)
+	    | subst (f$t') = subst f $ subst t'
+	    | subst t = (case assoc(instl,t) of
+		           Some u => u  |  None => t)
+      in  subst t  end;
+
+fun typ_subst_TVars iTs T = if null iTs then T else
+  let fun subst(Type(a,Ts)) = Type(a, map subst Ts)
+	| subst(T as TFree _) = T
+	| subst(T as TVar(ixn,_)) =
+            (case assoc(iTs,ixn) of None => T | Some(U) => U)
+  in subst T end;
+
+val subst_TVars = map_term_types o typ_subst_TVars;
+
+fun subst_Vars itms t = if null itms then t else
+  let fun subst(v as Var(ixn,_)) =
+            (case assoc(itms,ixn) of None => v | Some t => t)
+        | subst(Abs(a,T,t)) = Abs(a,T,subst t)
+        | subst(f$t) = subst f $ subst t
+        | subst(t) = t
+  in subst t end;
+
+fun subst_vars(iTs,itms) = if null iTs then subst_Vars itms else
+  let fun subst(Const(a,T)) = Const(a,typ_subst_TVars iTs T)
+        | subst(Free(a,T)) = Free(a,typ_subst_TVars iTs T)
+        | subst(v as Var(ixn,T)) = (case assoc(itms,ixn) of
+            None   => Var(ixn,typ_subst_TVars iTs T)
+          | Some t => t)
+        | subst(b as Bound _) = b
+        | subst(Abs(a,T,t)) = Abs(a,typ_subst_TVars iTs T,subst t)
+        | subst(f$t) = subst f $ subst t
+  in subst end;
+
+
+(*Computing the maximum index of a typ*)
+fun maxidx_of_typ(Type(_,Ts)) =
+	if Ts=[] then ~1 else max(map maxidx_of_typ Ts)
+  | maxidx_of_typ(TFree _) = ~1
+  | maxidx_of_typ(TVar((_,i),_)) = i;
+
+
+(*Computing the maximum index of a term*)
+fun maxidx_of_term (Const(_,T)) = maxidx_of_typ T
+  | maxidx_of_term (Bound _) = ~1
+  | maxidx_of_term (Free(_,T)) = maxidx_of_typ T
+  | maxidx_of_term (Var ((_,i), T)) = max[i, maxidx_of_typ T]
+  | maxidx_of_term (Abs (_,T,body)) = max[maxidx_of_term body, maxidx_of_typ T]
+  | maxidx_of_term (f$t) = max [maxidx_of_term f,  maxidx_of_term t];
+
+
+(* Increment the index of all Poly's in T by k *)
+fun incr_tvar k (Type(a,Ts)) = Type(a, map (incr_tvar k) Ts)
+  | incr_tvar k (T as TFree _) = T
+  | incr_tvar k (TVar((a,i),rs)) = TVar((a,i+k),rs);
+
+
+(**** Syntax-related declarations ****)
+
+
+(*Dummy type for parsing.  Will be replaced during type inference. *)
+val dummyT = Type("dummy",[]);
+
+(*scan a numeral of the given radix, normally 10*)
+fun scan_radixint (radix: int, cs) : int * string list =
+  let val zero = ord"0"
+      val limit = zero+radix
+      fun scan (num,[]) = (num,[])
+	| scan (num, c::cs) =
+	      if  zero <= ord c  andalso  ord c < limit
+	      then scan(radix*num + ord c - zero, cs)
+	      else (num, c::cs)
+  in  scan(0,cs)  end;
+
+fun scan_int cs = scan_radixint(10,cs);
+
+
+(*** Printing ***)
+
+
+(*Makes a variant of the name c distinct from the names in bs.
+  First attaches the suffix "a" and then increments this. *)
+fun variant bs c : string =
+  let fun vary2 c = if (c mem bs) then  vary2 (bump_string c)  else  c
+      fun vary1 c = if (c mem bs) then  vary2 (c ^ "a")  else  c
+  in  vary1 (if c="" then "u" else c)  end;
+
+(*Create variants of the list of names, with priority to the first ones*)
+fun variantlist ([], used) = []
+  | variantlist(b::bs, used) = 
+      let val b' = variant used b
+      in  b' :: variantlist (bs, b'::used)  end;
+
+(** TFrees and TVars **)
+
+(*maps  (bs,v)  to   v'::bs    this reverses the identifiers bs*)
+fun add_new_id (bs, c) : string list =  variant bs c  ::  bs;
+
+(*Accumulates the names in the term, suppressing duplicates.
+  Includes Frees and Consts.  For choosing unambiguous bound var names.*)
+fun add_term_names (Const(a,_), bs) = a ins bs
+  | add_term_names (Free(a,_), bs) = a ins bs
+  | add_term_names (f$u, bs) = add_term_names (f, add_term_names(u, bs))
+  | add_term_names (Abs(_,_,t), bs) = add_term_names(t,bs)
+  | add_term_names (_, bs) = bs;
+
+(*Accumulates the TVars in a type, suppressing duplicates. *)
+fun add_typ_tvars(Type(_,Ts),vs) = foldr add_typ_tvars (Ts,vs)
+  | add_typ_tvars(TFree(_),vs) = vs
+  | add_typ_tvars(TVar(v),vs) = v ins vs;
+
+(*Accumulates the TFrees in a type, suppressing duplicates. *)
+fun add_typ_tfree_names(Type(_,Ts),fs) = foldr add_typ_tfree_names (Ts,fs)
+  | add_typ_tfree_names(TFree(f,_),fs) = f ins fs
+  | add_typ_tfree_names(TVar(_),fs) = fs;
+
+fun add_typ_tfrees(Type(_,Ts),fs) = foldr add_typ_tfrees (Ts,fs)
+  | add_typ_tfrees(TFree(f),fs) = f ins fs
+  | add_typ_tfrees(TVar(_),fs) = fs;
+
+(*Accumulates the TVars in a term, suppressing duplicates. *)
+val add_term_tvars = it_term_types add_typ_tvars;
+val add_term_tvar_ixns = (map #1) o (it_term_types add_typ_tvars);
+
+(*Accumulates the TFrees in a term, suppressing duplicates. *)
+val add_term_tfrees = it_term_types add_typ_tfrees;
+val add_term_tfree_names = it_term_types add_typ_tfree_names;
+
+(*Non-list versions*)
+fun typ_tfrees T = add_typ_tfrees(T,[]);
+fun typ_tvars T = add_typ_tvars(T,[]);
+fun term_tfrees t = add_term_tfrees(t,[]);
+fun term_tvars t = add_term_tvars(t,[]);
+
+(** Frees and Vars **)
+
+(*a partial ordering (not reflexive) for atomic terms*)
+fun atless (Const (a,_), Const (b,_))  =  a<b
+  | atless (Free (a,_), Free (b,_)) =  a<b
+  | atless (Var(v,_), Var(w,_))  =  xless(v,w)
+  | atless (Bound i, Bound j)  =   i<j
+  | atless _  =  false;
+
+(*insert atomic term into partially sorted list, suppressing duplicates (?)*)
+fun insert_aterm (t,us) =
+  let fun inserta [] = [t]
+        | inserta (us as u::us') = 
+	      if atless(t,u) then t::us
+	      else if t=u then us (*duplicate*)
+	      else u :: inserta(us')
+  in  inserta us  end;
+
+(*Accumulates the Vars in the term, suppressing duplicates*)
+fun add_term_vars (t, vars: term list) = case t of
+    Var   _ => insert_aterm(t,vars)
+  | Abs (_,_,body) => add_term_vars(body,vars)
+  | f$t =>  add_term_vars (f, add_term_vars(t, vars))
+  | _ => vars;
+
+fun term_vars t = add_term_vars(t,[]);
+
+(*Accumulates the Frees in the term, suppressing duplicates*)
+fun add_term_frees (t, frees: term list) = case t of
+    Free   _ => insert_aterm(t,frees)
+  | Abs (_,_,body) => add_term_frees(body,frees)
+  | f$t =>  add_term_frees (f, add_term_frees(t, frees))
+  | _ => frees;
+
+fun term_frees t = add_term_frees(t,[]);
+
+(*Given an abstraction over P, replaces the bound variable by a Free variable
+  having a unique name. *)
+fun variant_abs (a,T,P) =
+  let val b = variant (add_term_names(P,[])) a
+  in  (b,  subst_bounds ([Free(b,T)], P))  end;
+
+(* renames and reverses the strings in vars away from names *)
+fun rename_aTs names vars : (string*typ)list =
+  let fun rename_aT (vars,(a,T)) =
+		(variant (map #1 vars @ names) a, T) :: vars
+  in foldl rename_aT ([],vars) end;
+
+fun rename_wrt_term t = rename_aTs (add_term_names(t,[]));