src/ZF/constructor.ML
changeset 0 a5a9c433f639
child 6 8ce8c4d13d4d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/constructor.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,200 @@
+(*  Title: 	ZF/constructor.ML
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Constructor function module -- for Datatype Definitions
+
+Defines constructors and a case-style eliminator (no primitive recursion)
+
+Features:
+* least or greatest fixedpoints
+* user-specified product and sum constructions
+* mutually recursive datatypes
+* recursion over arbitrary monotone operators
+* flexible: can derive any reasonable set of introduction rules
+* automatically constructs a case analysis operator (but no recursion op)
+* efficient treatment of large declarations (e.g. 60 constructors)
+*)
+
+(** STILL NEEDS: some treatment of recursion **)
+
+signature CONSTRUCTOR =
+  sig
+  val thy        : theory		(*parent theory*)
+  val rec_specs  : (string * string * (string list * string)list) list
+                      (*recursion ops, types, domains, constructors*)
+  val rec_styp	 : string		(*common type of all recursion ops*)
+  val ext        : Syntax.sext option	(*syntax extension for new theory*)
+  val sintrs     : string list		(*desired introduction rules*)
+  val monos      : thm list		(*monotonicity of each M operator*)
+  val type_intrs : thm list		(*type-checking intro rules*)
+  val type_elims : thm list		(*type-checking elim rules*)
+  end;
+
+signature CONSTRUCTOR_RESULT =
+  sig
+  val con_thy	 : theory		(*theory defining the constructors*)
+  val con_defs	 : thm list		(*definitions made in con_thy*)
+  val case_eqns  : thm list		(*equations for case operator*)
+  val free_iffs  : thm list		(*freeness rewrite rules*)
+  val free_SEs   : thm list		(*freeness destruct rules*)
+  val mk_free    : string -> thm	(*makes freeness theorems*)
+  val congs	 : thm list		(*congruence rules for simplifier*)
+  end;
+
+
+functor Constructor_Fun (structure Const: CONSTRUCTOR and
+                      Pr : PR and Su : SU) : CONSTRUCTOR_RESULT =
+struct
+open Logic Const;
+
+val dummy = writeln"Defining the constructor functions...";
+
+val case_name = "f";		(*name for case variables*)
+
+(** Extract basic information from arguments **)
+
+val sign = sign_of thy;
+val rdty = Sign.typ_of o Sign.read_ctyp sign;
+
+val rec_names = map #1 rec_specs;
+
+val dummy = assert_all Syntax.is_identifier rec_names
+   (fn a => "Name of recursive set not an identifier: " ^ a);
+
+(*Expands multiple constant declarations*)
+fun pairtypes (cs,st) = map (rpair st) cs;
+
+(*Constructors with types and arguments*)
+fun mk_con_ty_list cons_pairs = 
+  let fun mk_con_ty (a,st) =
+	  let val T = rdty st
+	      val args = mk_frees "xa" (binder_types T)
+	  in  (a,T,args) end
+  in  map mk_con_ty (flat (map pairtypes cons_pairs))  end;
+
+val con_ty_lists = map (mk_con_ty_list o #3) rec_specs;
+
+(** Define the constructors **)
+
+(*We identify 0 (the empty set) with the empty tuple*)
+fun mk_tuple [] = Const("0",iT)
+  | mk_tuple args = foldr1 (app Pr.pair) args;
+
+fun mk_inject n k u = access_bal(ap Su.inl, ap Su.inr, u) n k;
+
+val npart = length rec_names;		(*number of mutually recursive parts*)
+
+(*Make constructor definition*)
+fun mk_con_defs (kpart, con_ty_list) = 
+  let val ncon = length con_ty_list	(*number of constructors*)
+      fun mk_def ((a,T,args), kcon) =	(*kcon = index of this constructor*)
+	  mk_defpair sign 
+	     (list_comb (Const(a,T), args),
+	      mk_inject npart kpart (mk_inject ncon kcon (mk_tuple args)))
+  in  map mk_def (con_ty_list ~~ (1 upto ncon))  end;
+
+(** Define the case operator **)
+
+(*Combine split terms using case; yields the case operator for one part*)
+fun call_case case_list = 
+  let fun call_f (free,args) = 
+          ap_split Pr.split_const free (map (#2 o dest_Free) args)
+  in  fold_bal (app Su.elim) (map call_f case_list)  end;
+
+(** Generating function variables for the case definition
+    Non-identifiers (e.g. infixes) get a name of the form f_op_nnn. **)
+
+(*Treatment of a single constructor*)
+fun add_case ((a,T,args), (opno,cases)) =
+    if Syntax.is_identifier a 
+    then (opno,   
+	  (Free(case_name ^ "_" ^ a, T), args) :: cases)
+    else (opno+1, 
+	  (Free(case_name ^ "_op_" ^ string_of_int opno, T), args) :: cases);
+
+(*Treatment of a list of constructors, for one part*)
+fun add_case_list (con_ty_list, (opno,case_lists)) =
+    let val (opno',case_list) = foldr add_case (con_ty_list, (opno,[]))
+    in (opno', case_list :: case_lists) end;
+
+(*Treatment of all parts*)
+val (_, case_lists) = foldr add_case_list (con_ty_lists, (1,[]));
+
+val big_case_typ = flat (map (map #2) con_ty_lists) ---> (iT-->iT);
+
+val big_rec_name = space_implode "_" rec_names;
+
+val big_case_name = big_rec_name ^ "_case";
+
+(*The list of all the function variables*)
+val big_case_args = flat (map (map #1) case_lists);
+
+val big_case_tm = 
+    list_comb (Const(big_case_name, big_case_typ), big_case_args); 
+
+val big_case_def = 
+  mk_defpair sign 
+    (big_case_tm, fold_bal (app Su.elim) (map call_case case_lists)); 
+
+(** Build the new theory **)
+
+val axpairs =
+    big_case_def :: flat (map mk_con_defs ((1 upto npart) ~~ con_ty_lists));
+
+val const_decs = remove_mixfixes ext
+		   (([big_case_name], flatten_typ sign big_case_typ) :: 
+		    (big_rec_name ins rec_names, rec_styp) :: 
+		    flat (map #3 rec_specs));
+
+val con_thy = extend_theory thy (big_rec_name ^ "_Constructors")
+    ([], [], [], [], const_decs, ext) axpairs;
+
+(*1st element is the case definition; others are the constructors*)
+val con_defs = map (get_axiom con_thy o #1) axpairs;
+
+(** Prove the case theorem **)
+
+(*Each equation has the form 
+  rec_case(f_con1,...,f_conn)(coni(args)) = f_coni(args) *)
+fun mk_case_equation ((a,T,args), case_free) = 
+  mk_tprop 
+   (eq_const $ (big_case_tm $ (list_comb (Const(a,T), args)))
+	     $ (list_comb (case_free, args)));
+
+val case_trans = hd con_defs RS def_trans;
+
+(*proves a single case equation*)
+fun case_tacsf con_def _ = 
+  [rewtac con_def,
+   rtac case_trans 1,
+   REPEAT (resolve_tac [refl, Pr.split_eq RS trans, 
+			Su.case_inl RS trans, 
+			Su.case_inr RS trans] 1)];
+
+fun prove_case_equation (arg,con_def) =
+    prove_term (sign_of con_thy) [] 
+        (mk_case_equation arg, case_tacsf con_def);
+
+val free_iffs = 
+    map standard (con_defs RL [def_swap_iff]) @
+    [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff, Pr.pair_iff];
+
+val free_SEs   = map (gen_make_elim [conjE,FalseE]) (free_iffs RL [iffD1]);
+
+val free_cs = ZF_cs addSEs free_SEs;
+
+(*Typical theorems have the form ~con1=con2, con1=con2==>False,
+  con1(x)=con1(y) ==> x=y, con1(x)=con1(y) <-> x=y, etc.  *)
+fun mk_free s =
+    prove_goalw con_thy con_defs s
+      (fn prems => [cut_facts_tac prems 1, fast_tac free_cs 1]);
+
+val case_eqns = map prove_case_equation 
+		    (flat con_ty_lists ~~ big_case_args ~~ tl con_defs);
+
+val congs = mk_congs con_thy (flat (map #1 (const_decs @ ext_constants ext)));
+end;
+
+