--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/ex/proplog.ML Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,333 @@
+(* Title: ZF/ex/prop-log.ML
+ ID: $Id$
+ Author: Tobias Nipkow & Lawrence C Paulson
+ Copyright 1992 University of Cambridge
+
+For ex/prop-log.thy. Inductive definition of propositional logic.
+Soundness and completeness w.r.t. truth-tables.
+
+Prove: If H|=p then G|=p where G:Fin(H)
+*)
+
+open PropLog;
+
+(*** prop_rec -- by Vset recursion ***)
+
+val prop_congs = mk_typed_congs Prop.thy
+ [("b", "[i,i,i]=>i"), ("d", "[i,i,i,i]=>i")];
+
+(** conversion rules **)
+
+goal PropLog.thy "prop_rec(Fls,b,c,d) = b";
+by (rtac (prop_rec_def RS def_Vrec RS trans) 1);
+by (rewrite_goals_tac Prop.con_defs);
+by (SIMP_TAC rank_ss 1);
+val prop_rec_Fls = result();
+
+goal PropLog.thy "prop_rec(#v,b,c,d) = c(v)";
+by (rtac (prop_rec_def RS def_Vrec RS trans) 1);
+by (rewrite_goals_tac Prop.con_defs);
+by (SIMP_TAC (rank_ss addcongs prop_congs) 1);
+val prop_rec_Var = result();
+
+goal PropLog.thy "prop_rec(p=>q,b,c,d) = \
+\ d(p, q, prop_rec(p,b,c,d), prop_rec(q,b,c,d))";
+by (rtac (prop_rec_def RS def_Vrec RS trans) 1);
+by (rewrite_goals_tac Prop.con_defs);
+by (SIMP_TAC (rank_ss addcongs prop_congs) 1);
+val prop_rec_Imp = result();
+
+val prop_rec_ss =
+ arith_ss addrews [prop_rec_Fls, prop_rec_Var, prop_rec_Imp];
+
+(*** Semantics of propositional logic ***)
+
+(** The function is_true **)
+
+goalw PropLog.thy [is_true_def] "is_true(Fls,t) <-> False";
+by (SIMP_TAC (prop_rec_ss addrews [one_not_0 RS not_sym]) 1);
+val is_true_Fls = result();
+
+goalw PropLog.thy [is_true_def] "is_true(#v,t) <-> v:t";
+by (SIMP_TAC (prop_rec_ss addrews [one_not_0 RS not_sym]
+ addsplits [expand_if]) 1);
+val is_true_Var = result();
+
+goalw PropLog.thy [is_true_def]
+ "is_true(p=>q,t) <-> (is_true(p,t)-->is_true(q,t))";
+by (SIMP_TAC (prop_rec_ss addsplits [expand_if]) 1);
+val is_true_Imp = result();
+
+(** The function hyps **)
+
+goalw PropLog.thy [hyps_def] "hyps(Fls,t) = 0";
+by (SIMP_TAC prop_rec_ss 1);
+val hyps_Fls = result();
+
+goalw PropLog.thy [hyps_def] "hyps(#v,t) = {if(v:t, #v, #v=>Fls)}";
+by (SIMP_TAC prop_rec_ss 1);
+val hyps_Var = result();
+
+goalw PropLog.thy [hyps_def] "hyps(p=>q,t) = hyps(p,t) Un hyps(q,t)";
+by (SIMP_TAC prop_rec_ss 1);
+val hyps_Imp = result();
+
+val prop_ss = prop_rec_ss
+ addcongs Prop.congs
+ addcongs (mk_congs PropLog.thy ["Fin", "thms", "op |=","is_true","hyps"])
+ addrews Prop.intrs
+ addrews [is_true_Fls, is_true_Var, is_true_Imp,
+ hyps_Fls, hyps_Var, hyps_Imp];
+
+(*** Proof theory of propositional logic ***)
+
+structure PropThms = Inductive_Fun
+ (val thy = PropLog.thy;
+ val rec_doms = [("thms","prop")];
+ val sintrs =
+ ["[| p:H; p:prop |] ==> H |- p",
+ "[| p:prop; q:prop |] ==> H |- p=>q=>p",
+ "[| p:prop; q:prop; r:prop |] ==> H |- (p=>q=>r) => (p=>q) => p=>r",
+ "p:prop ==> H |- ((p=>Fls) => Fls) => p",
+ "[| H |- p=>q; H |- p; p:prop; q:prop |] ==> H |- q"];
+ val monos = [];
+ val con_defs = [];
+ val type_intrs = Prop.intrs;
+ val type_elims = []);
+
+goalw PropThms.thy PropThms.defs "!!G H. G<=H ==> thms(G) <= thms(H)";
+by (rtac lfp_mono 1);
+by (REPEAT (rtac PropThms.bnd_mono 1));
+by (REPEAT (ares_tac (univ_mono::basic_monos) 1));
+val thms_mono = result();
+
+val thms_in_pl = PropThms.dom_subset RS subsetD;
+
+val [thms_H, thms_K, thms_S, thms_DN, weak_thms_MP] = PropThms.intrs;
+
+(*Modus Ponens rule -- this stronger version avoids typecheck*)
+goal PropThms.thy "!!p q H. [| H |- p=>q; H |- p |] ==> H |- q";
+by (rtac weak_thms_MP 1);
+by (REPEAT (eresolve_tac [asm_rl, thms_in_pl, thms_in_pl RS ImpE] 1));
+val thms_MP = result();
+
+(*Rule is called I for Identity Combinator, not for Introduction*)
+goal PropThms.thy "!!p H. p:prop ==> H |- p=>p";
+by (rtac (thms_S RS thms_MP RS thms_MP) 1);
+by (rtac thms_K 5);
+by (rtac thms_K 4);
+by (REPEAT (ares_tac [ImpI] 1));
+val thms_I = result();
+
+(** Weakening, left and right **)
+
+(* [| G<=H; G|-p |] ==> H|-p Order of premises is convenient with RS*)
+val weaken_left = standard (thms_mono RS subsetD);
+
+(* H |- p ==> cons(a,H) |- p *)
+val weaken_left_cons = subset_consI RS weaken_left;
+
+val weaken_left_Un1 = Un_upper1 RS weaken_left;
+val weaken_left_Un2 = Un_upper2 RS weaken_left;
+
+goal PropThms.thy "!!H p q. [| H |- q; p:prop |] ==> H |- p=>q";
+by (rtac (thms_K RS thms_MP) 1);
+by (REPEAT (ares_tac [thms_in_pl] 1));
+val weaken_right = result();
+
+(*The deduction theorem*)
+goal PropThms.thy "!!p q H. [| cons(p,H) |- q; p:prop |] ==> H |- p=>q";
+by (etac PropThms.induct 1);
+by (fast_tac (ZF_cs addIs [thms_I, thms_H RS weaken_right]) 1);
+by (fast_tac (ZF_cs addIs [thms_K RS weaken_right]) 1);
+by (fast_tac (ZF_cs addIs [thms_S RS weaken_right]) 1);
+by (fast_tac (ZF_cs addIs [thms_DN RS weaken_right]) 1);
+by (fast_tac (ZF_cs addIs [thms_S RS thms_MP RS thms_MP]) 1);
+val deduction = result();
+
+
+(*The cut rule*)
+goal PropThms.thy "!!H p q. [| H|-p; cons(p,H) |- q |] ==> H |- q";
+by (rtac (deduction RS thms_MP) 1);
+by (REPEAT (ares_tac [thms_in_pl] 1));
+val cut = result();
+
+goal PropThms.thy "!!H p. [| H |- Fls; p:prop |] ==> H |- p";
+by (rtac (thms_DN RS thms_MP) 1);
+by (rtac weaken_right 2);
+by (REPEAT (ares_tac (Prop.intrs@[consI1]) 1));
+val thms_FlsE = result();
+
+(* [| H |- p=>Fls; H |- p; q: prop |] ==> H |- q *)
+val thms_notE = standard (thms_MP RS thms_FlsE);
+
+(*Soundness of the rules wrt truth-table semantics*)
+val [major] = goalw PropThms.thy [sat_def] "H |- p ==> H |= p";
+by (rtac (major RS PropThms.induct) 1);
+by (fast_tac (ZF_cs addSDs [is_true_Imp RS iffD1 RS mp]) 5);
+by (ALLGOALS (SIMP_TAC prop_ss));
+val soundness = result();
+
+(*** Towards the completeness proof ***)
+
+val [premf,premq] = goal PropThms.thy
+ "[| H |- p=>Fls; q: prop |] ==> H |- p=>q";
+by (rtac (premf RS thms_in_pl RS ImpE) 1);
+by (rtac deduction 1);
+by (rtac (premf RS weaken_left_cons RS thms_notE) 1);
+by (REPEAT (ares_tac [premq, consI1, thms_H] 1));
+val Fls_Imp = result();
+
+val [premp,premq] = goal PropThms.thy
+ "[| H |- p; H |- q=>Fls |] ==> H |- (p=>q)=>Fls";
+by (cut_facts_tac ([premp,premq] RL [thms_in_pl]) 1);
+by (etac ImpE 1);
+by (rtac deduction 1);
+by (rtac (premq RS weaken_left_cons RS thms_MP) 1);
+by (rtac (consI1 RS thms_H RS thms_MP) 1);
+by (rtac (premp RS weaken_left_cons) 2);
+by (REPEAT (ares_tac Prop.intrs 1));
+val Imp_Fls = result();
+
+(*Typical example of strengthening the induction formula*)
+val [major] = goal PropThms.thy
+ "p: prop ==> hyps(p,t) |- if(is_true(p,t), p, p=>Fls)";
+by (rtac (expand_if RS iffD2) 1);
+by (rtac (major RS Prop.induct) 1);
+by (ALLGOALS (ASM_SIMP_TAC (prop_ss addrews [thms_I, thms_H])));
+by (fast_tac (ZF_cs addIs [weaken_left_Un1, weaken_left_Un2,
+ weaken_right, Imp_Fls]
+ addSEs [Fls_Imp]) 1);
+val hyps_thms_if = result();
+
+(*Key lemma for completeness; yields a set of assumptions satisfying p*)
+val [premp,sat] = goalw PropThms.thy [sat_def]
+ "[| p: prop; 0 |= p |] ==> hyps(p,t) |- p";
+by (rtac (sat RS spec RS mp RS if_P RS subst) 1 THEN
+ rtac (premp RS hyps_thms_if) 2);
+by (fast_tac ZF_cs 1);
+val sat_thms_p = result();
+
+(*For proving certain theorems in our new propositional logic*)
+val thms_cs =
+ ZF_cs addSIs [FlsI, VarI, ImpI, deduction]
+ addIs [thms_in_pl, thms_H, thms_H RS thms_MP];
+
+(*The excluded middle in the form of an elimination rule*)
+val prems = goal PropThms.thy
+ "[| p: prop; q: prop |] ==> H |- (p=>q) => ((p=>Fls)=>q) => q";
+by (rtac (deduction RS deduction) 1);
+by (rtac (thms_DN RS thms_MP) 1);
+by (ALLGOALS (best_tac (thms_cs addSIs prems)));
+val thms_excluded_middle = result();
+
+(*Hard to prove directly because it requires cuts*)
+val prems = goal PropThms.thy
+ "[| cons(p,H) |- q; cons(p=>Fls,H) |- q; p: prop |] ==> H |- q";
+by (rtac (thms_excluded_middle RS thms_MP RS thms_MP) 1);
+by (REPEAT (resolve_tac (prems@Prop.intrs@[deduction,thms_in_pl]) 1));
+val thms_excluded_middle_rule = result();
+
+(*** Completeness -- lemmas for reducing the set of assumptions ***)
+
+(*For the case hyps(p,t)-cons(#v,Y) |- p;
+ we also have hyps(p,t)-{#v} <= hyps(p, t-{v}) *)
+val [major] = goal PropThms.thy
+ "p: prop ==> hyps(p, t-{v}) <= cons(#v=>Fls, hyps(p,t)-{#v})";
+by (rtac (major RS Prop.induct) 1);
+by (SIMP_TAC prop_ss 1);
+by (ASM_SIMP_TAC (prop_ss addsplits [expand_if]) 1);
+by (fast_tac (ZF_cs addSEs Prop.free_SEs) 1);
+by (ASM_SIMP_TAC prop_ss 1);
+by (fast_tac ZF_cs 1);
+val hyps_Diff = result();
+
+(*For the case hyps(p,t)-cons(#v => Fls,Y) |- p;
+ we also have hyps(p,t)-{#v=>Fls} <= hyps(p, cons(v,t)) *)
+val [major] = goal PropThms.thy
+ "p: prop ==> hyps(p, cons(v,t)) <= cons(#v, hyps(p,t)-{#v=>Fls})";
+by (rtac (major RS Prop.induct) 1);
+by (SIMP_TAC prop_ss 1);
+by (ASM_SIMP_TAC (prop_ss addsplits [expand_if]) 1);
+by (fast_tac (ZF_cs addSEs Prop.free_SEs) 1);
+by (ASM_SIMP_TAC prop_ss 1);
+by (fast_tac ZF_cs 1);
+val hyps_cons = result();
+
+(** Two lemmas for use with weaken_left **)
+
+goal ZF.thy "B-C <= cons(a, B-cons(a,C))";
+by (fast_tac ZF_cs 1);
+val cons_Diff_same = result();
+
+goal ZF.thy "cons(a, B-{c}) - D <= cons(a, B-cons(c,D))";
+by (fast_tac ZF_cs 1);
+val cons_Diff_subset2 = result();
+
+(*The set hyps(p,t) is finite, and elements have the form #v or #v=>Fls;
+ could probably prove the stronger hyps(p,t) : Fin(hyps(p,0) Un hyps(p,nat))*)
+val [major] = goal PropThms.thy
+ "p: prop ==> hyps(p,t) : Fin(UN v:nat. {#v, #v=>Fls})";
+by (rtac (major RS Prop.induct) 1);
+by (ASM_SIMP_TAC (prop_ss addrews [Fin_0I, Fin_consI, UN_I]
+ addsplits [expand_if]) 2);
+by (ALLGOALS (ASM_SIMP_TAC (prop_ss addrews [Un_0, Fin_0I, Fin_UnI])));
+val hyps_finite = result();
+
+val Diff_weaken_left = subset_refl RSN (2, Diff_mono) RS weaken_left;
+
+(*Induction on the finite set of assumptions hyps(p,t0).
+ We may repeatedly subtract assumptions until none are left!*)
+val [premp,sat] = goal PropThms.thy
+ "[| p: prop; 0 |= p |] ==> ALL t. hyps(p,t) - hyps(p,t0) |- p";
+by (rtac (premp RS hyps_finite RS Fin_induct) 1);
+by (SIMP_TAC (prop_ss addrews [premp, sat, sat_thms_p, Diff_0]) 1);
+by (safe_tac ZF_cs);
+(*Case hyps(p,t)-cons(#v,Y) |- p *)
+by (rtac thms_excluded_middle_rule 1);
+by (etac VarI 3);
+by (rtac (cons_Diff_same RS weaken_left) 1);
+by (etac spec 1);
+by (rtac (cons_Diff_subset2 RS weaken_left) 1);
+by (rtac (premp RS hyps_Diff RS Diff_weaken_left) 1);
+by (etac spec 1);
+(*Case hyps(p,t)-cons(#v => Fls,Y) |- p *)
+by (rtac thms_excluded_middle_rule 1);
+by (etac VarI 3);
+by (rtac (cons_Diff_same RS weaken_left) 2);
+by (etac spec 2);
+by (rtac (cons_Diff_subset2 RS weaken_left) 1);
+by (rtac (premp RS hyps_cons RS Diff_weaken_left) 1);
+by (etac spec 1);
+val completeness_0_lemma = result();
+
+(*The base case for completeness*)
+val [premp,sat] = goal PropThms.thy "[| p: prop; 0 |= p |] ==> 0 |- p";
+by (rtac (Diff_cancel RS subst) 1);
+by (rtac (sat RS (premp RS completeness_0_lemma RS spec)) 1);
+val completeness_0 = result();
+
+(*A semantic analogue of the Deduction Theorem*)
+goalw PropThms.thy [sat_def] "!!H p q. [| cons(p,H) |= q |] ==> H |= p=>q";
+by (SIMP_TAC prop_ss 1);
+by (fast_tac ZF_cs 1);
+val sat_Imp = result();
+
+goal PropThms.thy "!!H. H: Fin(prop) ==> ALL p:prop. H |= p --> H |- p";
+by (etac Fin_induct 1);
+by (safe_tac (ZF_cs addSIs [completeness_0]));
+by (rtac (weaken_left_cons RS thms_MP) 1);
+by (fast_tac (ZF_cs addSIs [sat_Imp,ImpI]) 1);
+by (fast_tac thms_cs 1);
+val completeness_lemma = result();
+
+val completeness = completeness_lemma RS bspec RS mp;
+
+val [finite] = goal PropThms.thy "H: Fin(prop) ==> H |- p <-> H |= p & p:prop";
+by (fast_tac (ZF_cs addSEs [soundness, finite RS completeness,
+ thms_in_pl]) 1);
+val thms_iff = result();
+
+writeln"Reached end of file.";
+
+