--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/ex/proplog.thy Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,43 @@
+(* Title: ZF/ex/prop-log.thy
+ ID: $Id$
+ Author: Tobias Nipkow & Lawrence C Paulson
+ Copyright 1993 University of Cambridge
+
+Inductive definition of propositional logic.
+*)
+
+PropLog = Prop + Fin +
+consts
+ (*semantics*)
+ prop_rec :: "[i, i, i=>i, [i,i,i,i]=>i] => i"
+ is_true :: "[i,i] => o"
+ "|=" :: "[i,i] => o" (infixl 50)
+ hyps :: "[i,i] => i"
+
+ (*proof theory*)
+ thms :: "i => i"
+ "|-" :: "[i,i] => o" (infixl 50)
+
+translations
+ "H |- p" == "p : thms(H)"
+
+rules
+
+ prop_rec_def
+ "prop_rec(p,b,c,h) == \
+\ Vrec(p, %p g.prop_case(b, c, %x y. h(x, y, g`x, g`y), p))"
+
+ (** Semantics of propositional logic **)
+ is_true_def
+ "is_true(p,t) == prop_rec(p, 0, %v. if(v:t, 1, 0), \
+\ %p q tp tq. if(tp=1,tq,1)) = 1"
+
+ (*For every valuation, if all elements of H are true then so is p*)
+ sat_def "H |= p == ALL t. (ALL q:H. is_true(q,t)) --> is_true(p,t)"
+
+ (** A finite set of hypotheses from t and the Vars in p **)
+ hyps_def
+ "hyps(p,t) == prop_rec(p, 0, %v. {if(v:t, #v, #v=>Fls)}, \
+\ %p q Hp Hq. Hp Un Hq)"
+
+end