src/HOL/AxClasses/Lattice/LatPreInsts.ML
changeset 1899 0075a8d26a80
parent 1573 6d66b59f94a9
child 4091 771b1f6422a8
--- a/src/HOL/AxClasses/Lattice/LatPreInsts.ML	Fri Aug 02 12:16:11 1996 +0200
+++ b/src/HOL/AxClasses/Lattice/LatPreInsts.ML	Fri Aug 02 12:25:26 1996 +0200
@@ -22,13 +22,13 @@
 
 goalw thy [is_inf_def, le_prod_def] "is_inf p q (fst p && fst q, snd p && snd q)";
   by (Simp_tac 1);
-  by (safe_tac HOL_cs);
+  by (safe_tac (!claset));
   by (REPEAT_FIRST (fn i => resolve_tac [inf_lb1, inf_lb2, inf_ub_lbs] i ORELSE atac i));
 qed "prod_is_inf";
 
 goalw thy [is_sup_def, le_prod_def] "is_sup p q (fst p || fst q, snd p || snd q)";
   by (Simp_tac 1);
-  by (safe_tac HOL_cs);
+  by (safe_tac (!claset));
   by (REPEAT_FIRST (fn i => resolve_tac [sup_ub1, sup_ub2, sup_lb_ubs] i ORELSE atac i));
 qed "prod_is_sup";
 
@@ -36,19 +36,19 @@
 (* functions *)
 
 goalw thy [is_inf_def, le_fun_def] "is_inf f g (%x. f x && g x)";
-  by (safe_tac HOL_cs);
+  by (safe_tac (!claset));
   br inf_lb1 1;
   br inf_lb2 1;
   br inf_ub_lbs 1;
-  by (REPEAT_FIRST (fast_tac HOL_cs));
+  by (REPEAT_FIRST (Fast_tac));
 qed "fun_is_inf";
 
 goalw thy [is_sup_def, le_fun_def] "is_sup f g (%x. f x || g x)";
-  by (safe_tac HOL_cs);
+  by (safe_tac (!claset));
   br sup_ub1 1;
   br sup_ub2 1;
   br sup_lb_ubs 1;
-  by (REPEAT_FIRST (fast_tac HOL_cs));
+  by (REPEAT_FIRST (Fast_tac));
 qed "fun_is_sup";
 
 
@@ -57,7 +57,7 @@
 
 goalw thy [is_inf_def, le_dual_def] "is_inf x y (Abs_dual (Rep_dual x || Rep_dual y))";
   by (stac Abs_dual_inverse' 1);
-  by (safe_tac HOL_cs);
+  by (safe_tac (!claset));
   br sup_ub1 1;
   br sup_ub2 1;
   br sup_lb_ubs 1;
@@ -67,7 +67,7 @@
 
 goalw thy [is_sup_def, le_dual_def] "is_sup x y (Abs_dual (Rep_dual x && Rep_dual y))";
   by (stac Abs_dual_inverse' 1);
-  by (safe_tac HOL_cs);
+  by (safe_tac (!claset));
   br inf_lb1 1;
   br inf_lb2 1;
   br inf_ub_lbs 1;