src/HOL/Bali/AxExample.thy
changeset 12854 00d4a435777f
child 12857 a4386cc9b1c3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Bali/AxExample.thy	Mon Jan 28 17:00:19 2002 +0100
@@ -0,0 +1,270 @@
+(*  Title:      isabelle/Bali/AxExample.thy
+    ID:         $Id$
+    Author:     David von Oheimb
+    Copyright   2000 Technische Universitaet Muenchen
+*)
+header {* Example of a proof based on the Bali axiomatic semantics *}
+
+theory AxExample = AxSem + Example:
+
+constdefs
+  arr_inv :: "st \<Rightarrow> bool"
+ "arr_inv \<equiv> \<lambda>s. \<exists>obj a T el. globs s (Stat Base) = Some obj \<and>
+                              values obj (Inl (arr, Base)) = Some (Addr a) \<and>
+                              heap s a = Some \<lparr>tag=Arr T 2,values=el\<rparr>"
+
+lemma arr_inv_new_obj: 
+"\<And>a. \<lbrakk>arr_inv s; new_Addr (heap s)=Some a\<rbrakk> \<Longrightarrow> arr_inv (gupd(Inl a\<mapsto>x) s)"
+apply (unfold arr_inv_def)
+apply (force dest!: new_AddrD2)
+done
+
+lemma arr_inv_set_locals [simp]: "arr_inv (set_locals l s) = arr_inv s"
+apply (unfold arr_inv_def)
+apply (simp (no_asm))
+done
+
+lemma arr_inv_gupd_Stat [simp]: 
+  "Base \<noteq> C \<Longrightarrow> arr_inv (gupd(Stat C\<mapsto>obj) s) = arr_inv s"
+apply (unfold arr_inv_def)
+apply (simp (no_asm_simp))
+done
+
+lemma ax_inv_lupd [simp]: "arr_inv (lupd(x\<mapsto>y) s) = arr_inv s"
+apply (unfold arr_inv_def)
+apply (simp (no_asm))
+done
+
+
+declare split_if_asm [split del]
+declare lvar_def [simp]
+
+ML {*
+fun inst1_tac s t = instantiate_tac [(s,t)];
+val ax_tac = REPEAT o rtac allI THEN'
+             resolve_tac(thm "ax_Skip"::thm "ax_StatRef"::thm "ax_MethdN"::
+                         thm "ax_Alloc"::thm "ax_Alloc_Arr"::
+                         thm "ax_SXAlloc_Normal"::
+                         funpow 7 tl (thms "ax_derivs.intros"))
+*}
+
+
+theorem ax_test: "tprg,({}::'a triple set)\<turnstile> 
+  {Normal (\<lambda>Y s Z::'a. heap_free four s \<and> \<not>initd Base s \<and> \<not> initd Ext s)} 
+  .test [Class Base]. {\<lambda>Y s Z. abrupt s = Some (Xcpt (Std IndOutBound))}"
+apply (unfold test_def arr_viewed_from_def)
+apply (tactic "ax_tac 1" (*;;*))
+defer
+apply  (tactic "ax_tac 1" (* Try *))
+defer
+apply    (tactic {* inst1_tac "Q1" 
+                 "\<lambda>Y s Z. arr_inv (snd s) \<and> tprg,s\<turnstile>catch SXcpt NullPointer" *})
+prefer 2
+apply    simp
+apply   (rule_tac P' = "Normal (\<lambda>Y s Z. arr_inv (snd s))" in conseq1)
+prefer 2
+apply    clarsimp
+apply   (rule_tac Q' = "(\<lambda>Y s Z. ?Q Y s Z)\<leftarrow>=False\<down>=\<diamondsuit>" in conseq2)
+prefer 2
+apply    simp
+apply   (tactic "ax_tac 1" (* While *))
+prefer 2
+apply    (rule ax_impossible [THEN conseq1], clarsimp)
+apply   (rule_tac P' = "Normal ?P" in conseq1)
+prefer 2
+apply    clarsimp
+apply   (tactic "ax_tac 1")
+apply   (tactic "ax_tac 1" (* AVar *))
+prefer 2
+apply    (rule ax_subst_Val_allI)
+apply    (tactic {* inst1_tac "P'21" "\<lambda>u a. Normal (?PP a\<leftarrow>?x) u" *})
+apply    (simp del: avar_def2 peek_and_def2)
+apply    (tactic "ax_tac 1")
+apply   (tactic "ax_tac 1")
+      (* just for clarification: *)
+apply   (rule_tac Q' = "Normal (\<lambda>Var:(v, f) u ua. fst (snd (avar tprg (Intg 2) v u)) = Some (Xcpt (Std IndOutBound)))" in conseq2)
+prefer 2
+apply    (clarsimp simp add: split_beta)
+apply   (tactic "ax_tac 1" (* FVar *))
+apply    (tactic "ax_tac 2" (* StatRef *))
+apply   (rule ax_derivs.Done [THEN conseq1])
+apply   (clarsimp simp add: arr_inv_def inited_def in_bounds_def)
+defer
+apply  (rule ax_SXAlloc_catch_SXcpt)
+apply  (rule_tac Q' = "(\<lambda>Y (x, s) Z. x = Some (Xcpt (Std NullPointer)) \<and> arr_inv s) \<and>. heap_free two" in conseq2)
+prefer 2
+apply   (simp add: arr_inv_new_obj)
+apply  (tactic "ax_tac 1") 
+apply  (rule_tac C = "Ext" in ax_Call_known_DynT)
+apply     (unfold DynT_prop_def)
+apply     (simp (no_asm))
+apply    (intro strip)
+apply    (rule_tac P' = "Normal ?P" in conseq1)
+apply     (tactic "ax_tac 1" (* Methd *))
+apply     (rule ax_thin [OF _ empty_subsetI])
+apply     (simp (no_asm) add: body_def2)
+apply     (tactic "ax_tac 1" (* Body *))
+(* apply       (rule_tac [2] ax_derivs.Abrupt) *)
+defer
+apply      (simp (no_asm))
+apply      (tactic "ax_tac 1")
+apply      (tactic "ax_tac 1") (* Ass *)
+prefer 2
+apply       (rule ax_subst_Var_allI)
+apply       (tactic {* inst1_tac "P'27" "\<lambda>a vs l vf. ?PP a vs l vf\<leftarrow>?x \<and>. ?p" *})
+apply       (rule allI)
+apply       (tactic {* simp_tac (simpset() delloop "split_all_tac" delsimps [thm "peek_and_def2"]) 1 *})
+apply       (rule ax_derivs.Abrupt)
+apply      (simp (no_asm))
+apply      (tactic "ax_tac 1" (* FVar *))
+apply       (tactic "ax_tac 2", tactic "ax_tac 2", tactic "ax_tac 2")
+apply      (tactic "ax_tac 1")
+apply     clarsimp
+apply     (tactic {* inst1_tac "R14" "\<lambda>a'. Normal ((\<lambda>Vals:vs (x, s) Z. arr_inv s \<and> inited Ext (globs s) \<and> a' \<noteq> Null \<and> hd vs = Null) \<and>. heap_free two)" *})
+prefer 5
+apply     (rule ax_derivs.Done [THEN conseq1], force)
+apply    force
+apply   (rule ax_subst_Val_allI)
+apply   (tactic {* inst1_tac "P'33" "\<lambda>u a. Normal (?PP a\<leftarrow>?x) u" *})
+apply   (simp (no_asm) del: peek_and_def2)
+apply   (tactic "ax_tac 1")
+prefer 2
+apply   (rule ax_subst_Val_allI)
+apply    (tactic {* inst1_tac "P'4" "\<lambda>aa v. Normal (?QQ aa v\<leftarrow>?y)" *})
+apply    (simp del: peek_and_def2)
+apply    (tactic "ax_tac 1")
+apply   (tactic "ax_tac 1")
+apply  (tactic "ax_tac 1")
+apply  (tactic "ax_tac 1")
+(* end method call *)
+apply (simp (no_asm))
+    (* just for clarification: *)
+apply (rule_tac Q' = "Normal ((\<lambda>Y (x, s) Z. arr_inv s \<and> (\<exists>a. the (locals s (VName e)) = Addr a \<and> obj_class (the (globs s (Inl a))) = Ext \<and> 
+ invocation_declclass tprg IntVir s (the (locals s (VName e))) (ClassT Base)  
+     \<lparr>name = foo, parTs = [Class Base]\<rparr> = Ext)) \<and>. initd Ext \<and>. heap_free two)"
+  in conseq2)
+prefer 2
+apply  clarsimp
+apply (tactic "ax_tac 1")
+apply (tactic "ax_tac 1")
+defer
+apply  (rule ax_subst_Var_allI)
+apply  (tactic {* inst1_tac "P'14" "\<lambda>u vf. Normal (?PP vf \<and>. ?p) u" *})
+apply  (simp (no_asm) del: split_paired_All peek_and_def2)
+apply  (tactic "ax_tac 1" (* NewC *))
+apply  (tactic "ax_tac 1" (* ax_Alloc *))
+     (* just for clarification: *)
+apply  (rule_tac Q' = "Normal ((\<lambda>Y s Z. arr_inv (store s) \<and> vf=lvar (VName e) (store s)) \<and>. heap_free tree \<and>. initd Ext)" in conseq2)
+prefer 2
+apply   (simp add: invocation_declclass_def dynmethd_def)
+apply   (unfold dynlookup_def)
+apply   (simp add: dynmethd_Ext_foo)
+apply   (force elim!: arr_inv_new_obj atleast_free_SucD atleast_free_weaken)
+     (* begin init *)
+apply  (rule ax_InitS)
+apply     force
+apply    (simp (no_asm))
+apply   (tactic {* simp_tac (simpset() delloop "split_all_tac") 1 *})
+apply   (rule ax_Init_Skip_lemma)
+apply  (tactic {* simp_tac (simpset() delloop "split_all_tac") 1 *})
+apply  (rule ax_InitS [THEN conseq1] (* init Base *))
+apply      force
+apply     (simp (no_asm))
+apply    (unfold arr_viewed_from_def)
+apply    (rule allI)
+apply    (rule_tac P' = "Normal ?P" in conseq1)
+apply     (tactic {* simp_tac (simpset() delloop "split_all_tac") 1 *})
+apply     (tactic "ax_tac 1")
+apply     (tactic "ax_tac 1")
+apply     (rule_tac [2] ax_subst_Var_allI)
+apply      (tactic {* inst1_tac "P'29" "\<lambda>vf l vfa. Normal (?P vf l vfa)" *})
+apply     (tactic {* simp_tac (simpset() delloop "split_all_tac" delsimps [split_paired_All, thm "peek_and_def2"]) 2 *})
+apply      (tactic "ax_tac 2" (* NewA *))
+apply       (tactic "ax_tac 3" (* ax_Alloc_Arr *))
+apply       (tactic "ax_tac 3")
+apply      (tactic {* inst1_tac "P" "\<lambda>vf l vfa. Normal (?P vf l vfa\<leftarrow>\<diamondsuit>)" *})
+apply      (tactic {* simp_tac (simpset() delloop "split_all_tac") 2 *})
+apply      (tactic "ax_tac 2")
+apply     (tactic "ax_tac 1" (* FVar *))
+apply      (tactic "ax_tac 2" (* StatRef *))
+apply     (rule ax_derivs.Done [THEN conseq1])
+apply     (tactic {* inst1_tac "Q22" "\<lambda>vf. Normal ((\<lambda>Y s Z. vf=lvar (VName e) (snd s)) \<and>. heap_free four \<and>. initd Base \<and>. initd Ext)" *})
+apply     (clarsimp split del: split_if)
+apply     (frule atleast_free_weaken [THEN atleast_free_weaken])
+apply     (drule initedD)
+apply     (clarsimp elim!: atleast_free_SucD simp add: arr_inv_def)
+apply    force
+apply   (tactic {* simp_tac (simpset() delloop "split_all_tac") 1 *})
+apply   (rule ax_triv_Init_Object [THEN peek_and_forget2, THEN conseq1])
+apply     (rule wf_tprg)
+apply    clarsimp
+apply   (tactic {* inst1_tac "P22" "\<lambda>vf. Normal ((\<lambda>Y s Z. vf = lvar (VName e) (snd s)) \<and>. heap_free four \<and>. initd Ext)" *})
+apply   clarsimp
+apply  (tactic {* inst1_tac "PP" "\<lambda>vf. Normal ((\<lambda>Y s Z. vf = lvar (VName e) (snd s)) \<and>. heap_free four \<and>. Not \<circ> initd Base)" *})
+apply  clarsimp
+     (* end init *)
+apply (rule conseq1)
+apply (tactic "ax_tac 1")
+apply clarsimp
+done
+
+(*
+while (true) {
+  if (i) {throw xcpt;}
+  else i=j
+}
+*)
+lemma Loop_Xcpt_benchmark: 
+ "Q = (\<lambda>Y (x,s) Z. x \<noteq> None \<longrightarrow> the_Bool (the (locals s i))) \<Longrightarrow>  
+  G,({}::'a triple set)\<turnstile>{Normal (\<lambda>Y s Z::'a. True)}  
+  .lab1\<bullet> While(Lit (Bool True)) (If(Acc (LVar i)) (Throw (Acc (LVar xcpt))) Else
+        (Expr (Ass (LVar i) (Acc (LVar j))))). {Q}"
+apply (rule_tac P' = "Q" and Q' = "Q\<leftarrow>=False\<down>=\<diamondsuit>" in conseq12)
+apply  safe
+apply  (tactic "ax_tac 1" (* Loop *))
+apply   (rule ax_Normal_cases)
+prefer 2
+apply    (rule ax_derivs.Abrupt [THEN conseq1], clarsimp simp add: Let_def)
+apply   (rule conseq1)
+apply    (tactic "ax_tac 1")
+apply   clarsimp
+prefer 2
+apply  clarsimp
+apply (tactic "ax_tac 1" (* If *))
+apply  (tactic 
+  {* inst1_tac "P'21" "Normal (\<lambda>s.. (\<lambda>Y s Z. True)\<down>=Val (the (locals s i)))" *})
+apply  (tactic "ax_tac 1")
+apply  (rule conseq1)
+apply   (tactic "ax_tac 1")
+apply  clarsimp
+apply (rule allI)
+apply (rule ax_escape)
+apply auto
+apply  (rule conseq1)
+apply   (tactic "ax_tac 1" (* Throw *))
+apply   (tactic "ax_tac 1")
+apply   (tactic "ax_tac 1")
+apply  clarsimp
+apply (rule_tac Q' = "Normal (\<lambda>Y s Z. True)" in conseq2)
+prefer 2
+apply  clarsimp
+apply (rule conseq1)
+apply  (tactic "ax_tac 1")
+apply  (tactic "ax_tac 1")
+prefer 2
+apply   (rule ax_subst_Var_allI)
+apply   (tactic {* inst1_tac "P'29" "\<lambda>b Y ba Z vf. \<lambda>Y (x,s) Z. x=None \<and> snd vf = snd (lvar i s)" *})
+apply   (rule allI)
+apply   (rule_tac P' = "Normal ?P" in conseq1)
+prefer 2
+apply    clarsimp
+apply   (tactic "ax_tac 1")
+apply   (rule conseq1)
+apply    (tactic "ax_tac 1")
+apply   clarsimp
+apply  (tactic "ax_tac 1")
+apply clarsimp
+done
+
+end
+