src/HOL/Bali/AxSem.thy
changeset 12854 00d4a435777f
child 12857 a4386cc9b1c3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Bali/AxSem.thy	Mon Jan 28 17:00:19 2002 +0100
@@ -0,0 +1,1191 @@
+(*  Title:      isabelle/Bali/AxSem.thy
+    ID:         $Id$
+    Author:     David von Oheimb
+    Copyright   1998 Technische Universitaet Muenchen
+*)
+
+header {* Axiomatic semantics of Java expressions and statements 
+          (see also Eval.thy)
+        *}
+
+theory AxSem = Evaln + TypeSafe:
+
+text {*
+design issues:
+\begin{itemize}
+\item a strong version of validity for triples with premises, namely one that 
+      takes the recursive depth needed to complete execution, enables 
+      correctness proof
+\item auxiliary variables are handled first-class (-> Thomas Kleymann)
+\item expressions not flattened to elementary assignments (as usual for 
+      axiomatic semantics) but treated first-class => explicit result value 
+      handling
+\item intermediate values not on triple, but on assertion level 
+      (with result entry)
+\item multiple results with semantical substitution mechnism not requiring a 
+      stack 
+\item because of dynamic method binding, terms need to be dependent on state.
+  this is also useful for conditional expressions and statements
+\item result values in triples exactly as in eval relation (also for xcpt 
+      states)
+\item validity: additional assumption of state conformance and well-typedness,
+  which is required for soundness and thus rule hazard required of completeness
+\end{itemize}
+
+restrictions:
+\begin{itemize}
+\item all triples in a derivation are of the same type (due to weak 
+      polymorphism)
+\end{itemize}
+*}
+
+
+
+types  res = vals (* result entry *)
+syntax
+  Val  :: "val      \<Rightarrow> res"
+  Var  :: "var      \<Rightarrow> res"
+  Vals :: "val list \<Rightarrow> res"
+translations
+  "Val  x"     => "(In1 x)"
+  "Var  x"     => "(In2 x)"
+  "Vals x"     => "(In3 x)"
+
+syntax
+  "Val_"    :: "[pttrn] => pttrn"     ("Val:_"  [951] 950)
+  "Var_"    :: "[pttrn] => pttrn"     ("Var:_"  [951] 950)
+  "Vals_"   :: "[pttrn] => pttrn"     ("Vals:_" [951] 950)
+
+translations
+  "\<lambda>Val:v . b"  == "(\<lambda>v. b) \<circ> the_In1"
+  "\<lambda>Var:v . b"  == "(\<lambda>v. b) \<circ> the_In2"
+  "\<lambda>Vals:v. b"  == "(\<lambda>v. b) \<circ> the_In3"
+
+  (* relation on result values, state and auxiliary variables *)
+types 'a assn   =        "res \<Rightarrow> state \<Rightarrow> 'a \<Rightarrow> bool"
+translations
+      "res"    <= (type) "AxSem.res"
+      "a assn" <= (type) "vals \<Rightarrow> state \<Rightarrow> a \<Rightarrow> bool"
+
+constdefs
+  assn_imp   :: "'a assn \<Rightarrow> 'a assn \<Rightarrow> bool"             (infixr "\<Rightarrow>" 25)
+ "P \<Rightarrow> Q \<equiv> \<forall>Y s Z. P Y s Z \<longrightarrow> Q Y s Z"
+  
+lemma assn_imp_def2 [iff]: "(P \<Rightarrow> Q) = (\<forall>Y s Z. P Y s Z \<longrightarrow> Q Y s Z)"
+apply (unfold assn_imp_def)
+apply (rule HOL.refl)
+done
+
+
+section "assertion transformers"
+
+subsection "peek-and"
+
+constdefs
+  peek_and   :: "'a assn \<Rightarrow> (state \<Rightarrow>  bool) \<Rightarrow> 'a assn" (infixl "\<and>." 13)
+ "P \<and>. p \<equiv> \<lambda>Y s Z. P Y s Z \<and> p s"
+
+lemma peek_and_def2 [simp]: "peek_and P p Y s = (\<lambda>Z. (P Y s Z \<and> p s))"
+apply (unfold peek_and_def)
+apply (simp (no_asm))
+done
+
+lemma peek_and_Not [simp]: "(P \<and>. (\<lambda>s. \<not> f s)) = (P \<and>. Not \<circ> f)"
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+lemma peek_and_and [simp]: "peek_and (peek_and P p) p = peek_and P p"
+apply (unfold peek_and_def)
+apply (simp (no_asm))
+done
+
+lemma peek_and_commut: "(P \<and>. p \<and>. q) = (P \<and>. q \<and>. p)"
+apply (rule ext)
+apply (rule ext)
+apply (rule ext)
+apply auto
+done
+
+syntax
+  Normal     :: "'a assn \<Rightarrow> 'a assn"
+translations
+  "Normal P" == "P \<and>. normal"
+
+lemma peek_and_Normal [simp]: "peek_and (Normal P) p = Normal (peek_and P p)"
+apply (rule ext)
+apply (rule ext)
+apply (rule ext)
+apply auto
+done
+
+subsection "assn-supd"
+
+constdefs
+  assn_supd  :: "'a assn \<Rightarrow> (state \<Rightarrow> state) \<Rightarrow> 'a assn" (infixl ";." 13)
+ "P ;. f \<equiv> \<lambda>Y s' Z. \<exists>s. P Y s Z \<and> s' = f s"
+
+lemma assn_supd_def2 [simp]: "assn_supd P f Y s' Z = (\<exists>s. P Y s Z \<and> s' = f s)"
+apply (unfold assn_supd_def)
+apply (simp (no_asm))
+done
+
+subsection "supd-assn"
+
+constdefs
+  supd_assn  :: "(state \<Rightarrow> state) \<Rightarrow> 'a assn \<Rightarrow> 'a assn" (infixr ".;" 13)
+ "f .; P \<equiv> \<lambda>Y s. P Y (f s)"
+
+
+lemma supd_assn_def2 [simp]: "(f .; P) Y s = P Y (f s)"
+apply (unfold supd_assn_def)
+apply (simp (no_asm))
+done
+
+lemma supd_assn_supdD [elim]: "((f .; Q) ;. f) Y s Z \<Longrightarrow> Q Y s Z"
+apply auto
+done
+
+lemma supd_assn_supdI [elim]: "Q Y s Z \<Longrightarrow> (f .; (Q ;. f)) Y s Z"
+apply (auto simp del: split_paired_Ex)
+done
+
+subsection "subst-res"
+
+constdefs
+  subst_res   :: "'a assn \<Rightarrow> res \<Rightarrow> 'a assn"              ("_\<leftarrow>_"  [60,61] 60)
+ "P\<leftarrow>w \<equiv> \<lambda>Y. P w"
+
+lemma subst_res_def2 [simp]: "(P\<leftarrow>w) Y = P w"
+apply (unfold subst_res_def)
+apply (simp (no_asm))
+done
+
+lemma subst_subst_res [simp]: "P\<leftarrow>w\<leftarrow>v = P\<leftarrow>w"
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+lemma peek_and_subst_res [simp]: "(P \<and>. p)\<leftarrow>w = (P\<leftarrow>w \<and>. p)"
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+(*###Do not work for some strange (unification?) reason
+lemma subst_res_Val_beta [simp]: "(\<lambda>Y. P (the_In1 Y))\<leftarrow>Val v = (\<lambda>Y. P v)"
+apply (rule ext)
+by simp
+
+lemma subst_res_Var_beta [simp]: "(\<lambda>Y. P (the_In2 Y))\<leftarrow>Var vf = (\<lambda>Y. P vf)";
+apply (rule ext)
+by simp
+
+lemma subst_res_Vals_beta [simp]: "(\<lambda>Y. P (the_In3 Y))\<leftarrow>Vals vs = (\<lambda>Y. P vs)";
+apply (rule ext)
+by simp
+*)
+
+subsection "subst-Bool"
+
+constdefs
+  subst_Bool  :: "'a assn \<Rightarrow> bool \<Rightarrow> 'a assn"             ("_\<leftarrow>=_" [60,61] 60)
+ "P\<leftarrow>=b \<equiv> \<lambda>Y s Z. \<exists>v. P (Val v) s Z \<and> (normal s \<longrightarrow> the_Bool v=b)"
+
+lemma subst_Bool_def2 [simp]: 
+"(P\<leftarrow>=b) Y s Z = (\<exists>v. P (Val v) s Z \<and> (normal s \<longrightarrow> the_Bool v=b))"
+apply (unfold subst_Bool_def)
+apply (simp (no_asm))
+done
+
+lemma subst_Bool_the_BoolI: "P (Val b) s Z \<Longrightarrow> (P\<leftarrow>=the_Bool b) Y s Z"
+apply auto
+done
+
+subsection "peek-res"
+
+constdefs
+  peek_res    :: "(res \<Rightarrow> 'a assn) \<Rightarrow> 'a assn"
+ "peek_res Pf \<equiv> \<lambda>Y. Pf Y Y"
+
+syntax
+"@peek_res"  :: "pttrn \<Rightarrow> 'a assn \<Rightarrow> 'a assn"            ("\<lambda>_:. _" [0,3] 3)
+translations
+  "\<lambda>w:. P"   == "peek_res (\<lambda>w. P)"
+
+lemma peek_res_def2 [simp]: "peek_res P Y = P Y Y"
+apply (unfold peek_res_def)
+apply (simp (no_asm))
+done
+
+lemma peek_res_subst_res [simp]: "peek_res P\<leftarrow>w = P w\<leftarrow>w"
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+(* unused *)
+lemma peek_subst_res_allI: 
+ "(\<And>a. T a (P (f a)\<leftarrow>f a)) \<Longrightarrow> \<forall>a. T a (peek_res P\<leftarrow>f a)"
+apply (rule allI)
+apply (simp (no_asm))
+apply fast
+done
+
+subsection "ign-res"
+
+constdefs
+  ign_res    ::  "        'a assn \<Rightarrow> 'a assn"            ("_\<down>" [1000] 1000)
+  "P\<down>        \<equiv> \<lambda>Y s Z. \<exists>Y. P Y s Z"
+
+lemma ign_res_def2 [simp]: "P\<down> Y s Z = (\<exists>Y. P Y s Z)"
+apply (unfold ign_res_def)
+apply (simp (no_asm))
+done
+
+lemma ign_ign_res [simp]: "P\<down>\<down> = P\<down>"
+apply (rule ext)
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+lemma ign_subst_res [simp]: "P\<down>\<leftarrow>w = P\<down>"
+apply (rule ext)
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+lemma peek_and_ign_res [simp]: "(P \<and>. p)\<down> = (P\<down> \<and>. p)"
+apply (rule ext)
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+subsection "peek-st"
+
+constdefs
+  peek_st    :: "(st \<Rightarrow> 'a assn) \<Rightarrow> 'a assn"
+ "peek_st P \<equiv> \<lambda>Y s. P (store s) Y s"
+
+syntax
+"@peek_st"   :: "pttrn \<Rightarrow> 'a assn \<Rightarrow> 'a assn"            ("\<lambda>_.. _" [0,3] 3)
+translations
+  "\<lambda>s.. P"   == "peek_st (\<lambda>s. P)"
+
+lemma peek_st_def2 [simp]: "(\<lambda>s.. Pf s) Y s = Pf (store s) Y s"
+apply (unfold peek_st_def)
+apply (simp (no_asm))
+done
+
+lemma peek_st_triv [simp]: "(\<lambda>s.. P) = P"
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+lemma peek_st_st [simp]: "(\<lambda>s.. \<lambda>s'.. P s s') = (\<lambda>s.. P s s)"
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+lemma peek_st_split [simp]: "(\<lambda>s.. \<lambda>Y s'. P s Y s') = (\<lambda>Y s. P (store s) Y s)"
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+lemma peek_st_subst_res [simp]: "(\<lambda>s.. P s)\<leftarrow>w = (\<lambda>s.. P s\<leftarrow>w)"
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+lemma peek_st_Normal [simp]: "(\<lambda>s..(Normal (P s))) = Normal (\<lambda>s.. P s)"
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+subsection "ign-res-eq"
+
+constdefs
+  ign_res_eq :: "'a assn \<Rightarrow> res \<Rightarrow> 'a assn"               ("_\<down>=_"  [60,61] 60)
+ "P\<down>=w       \<equiv> \<lambda>Y:. P\<down> \<and>. (\<lambda>s. Y=w)"
+
+lemma ign_res_eq_def2 [simp]: "(P\<down>=w) Y s Z = ((\<exists>Y. P Y s Z) \<and> Y=w)"
+apply (unfold ign_res_eq_def)
+apply auto
+done
+
+lemma ign_ign_res_eq [simp]: "(P\<down>=w)\<down> = P\<down>"
+apply (rule ext)
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+(* unused *)
+lemma ign_res_eq_subst_res: "P\<down>=w\<leftarrow>w = P\<down>"
+apply (rule ext)
+apply (rule ext)
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+(* unused *)
+lemma subst_Bool_ign_res_eq: "((P\<leftarrow>=b)\<down>=x) Y s Z = ((P\<leftarrow>=b) Y s Z  \<and> Y=x)"
+apply (simp (no_asm))
+done
+
+subsection "RefVar"
+
+constdefs
+  RefVar    :: "(state \<Rightarrow> vvar \<times> state) \<Rightarrow> 'a assn \<Rightarrow> 'a assn"(infixr "..;" 13)
+ "vf ..; P \<equiv> \<lambda>Y s. let (v,s') = vf s in P (Var v) s'"
+ 
+lemma RefVar_def2 [simp]: "(vf ..; P) Y s =  
+  P (Var (fst (vf s))) (snd (vf s))"
+apply (unfold RefVar_def Let_def)
+apply (simp (no_asm) add: split_beta)
+done
+
+subsection "allocation"
+
+constdefs
+  Alloc      :: "prog \<Rightarrow> obj_tag \<Rightarrow> 'a assn \<Rightarrow> 'a assn"
+ "Alloc G otag P \<equiv> \<lambda>Y s Z.
+                   \<forall>s' a. G\<turnstile>s \<midarrow>halloc otag\<succ>a\<rightarrow> s'\<longrightarrow> P (Val (Addr a)) s' Z"
+
+  SXAlloc     :: "prog \<Rightarrow> 'a assn \<Rightarrow> 'a assn"
+ "SXAlloc G P \<equiv> \<lambda>Y s Z. \<forall>s'. G\<turnstile>s \<midarrow>sxalloc\<rightarrow> s' \<longrightarrow> P Y s' Z"
+
+
+lemma Alloc_def2 [simp]: "Alloc G otag P Y s Z =  
+       (\<forall>s' a. G\<turnstile>s \<midarrow>halloc otag\<succ>a\<rightarrow> s'\<longrightarrow> P (Val (Addr a)) s' Z)"
+apply (unfold Alloc_def)
+apply (simp (no_asm))
+done
+
+lemma SXAlloc_def2 [simp]: 
+  "SXAlloc G P Y s Z = (\<forall>s'. G\<turnstile>s \<midarrow>sxalloc\<rightarrow> s' \<longrightarrow> P Y s' Z)"
+apply (unfold SXAlloc_def)
+apply (simp (no_asm))
+done
+
+section "validity"
+
+constdefs
+  type_ok  :: "prog \<Rightarrow> term \<Rightarrow> state \<Rightarrow> bool"
+ "type_ok G t s \<equiv> \<exists>L T C. (normal s \<longrightarrow> \<lparr>prg=G,cls=C,lcl=L\<rparr>\<turnstile>t\<Colon>T) \<and> s\<Colon>\<preceq>(G,L)"
+
+datatype    'a triple = triple "('a assn)" "term" "('a assn)" (** should be
+something like triple = \<forall>'a. triple ('a assn) term ('a assn)   **)
+                                        ("{(1_)}/ _>/ {(1_)}"      [3,65,3]75)
+types    'a triples = "'a triple set"
+
+syntax
+
+  var_triple   :: "['a assn, var         ,'a assn] \<Rightarrow> 'a triple"
+                                         ("{(1_)}/ _=>/ {(1_)}"    [3,80,3] 75)
+  expr_triple  :: "['a assn, expr        ,'a assn] \<Rightarrow> 'a triple"
+                                         ("{(1_)}/ _->/ {(1_)}"    [3,80,3] 75)
+  exprs_triple :: "['a assn, expr list   ,'a assn] \<Rightarrow> 'a triple"
+                                         ("{(1_)}/ _#>/ {(1_)}"    [3,65,3] 75)
+  stmt_triple  :: "['a assn, stmt,        'a assn] \<Rightarrow> 'a triple"
+                                         ("{(1_)}/ ._./ {(1_)}"     [3,65,3] 75)
+
+syntax (xsymbols)
+
+  triple       :: "['a assn, term        ,'a assn] \<Rightarrow> 'a triple"
+                                         ("{(1_)}/ _\<succ>/ {(1_)}"     [3,65,3] 75)
+  var_triple   :: "['a assn, var         ,'a assn] \<Rightarrow> 'a triple"
+                                         ("{(1_)}/ _=\<succ>/ {(1_)}"    [3,80,3] 75)
+  expr_triple  :: "['a assn, expr        ,'a assn] \<Rightarrow> 'a triple"
+                                         ("{(1_)}/ _-\<succ>/ {(1_)}"    [3,80,3] 75)
+  exprs_triple :: "['a assn, expr list   ,'a assn] \<Rightarrow> 'a triple"
+                                         ("{(1_)}/ _\<doteq>\<succ>/ {(1_)}"    [3,65,3] 75)
+
+translations
+  "{P} e-\<succ> {Q}" == "{P} In1l e\<succ> {Q}"
+  "{P} e=\<succ> {Q}" == "{P} In2  e\<succ> {Q}"
+  "{P} e\<doteq>\<succ> {Q}" == "{P} In3  e\<succ> {Q}"
+  "{P} .c. {Q}" == "{P} In1r c\<succ> {Q}"
+
+lemma inj_triple: "inj (\<lambda>(P,t,Q). {P} t\<succ> {Q})"
+apply (rule injI)
+apply auto
+done
+
+lemma triple_inj_eq: "({P} t\<succ> {Q} = {P'} t'\<succ> {Q'} ) = (P=P' \<and> t=t' \<and> Q=Q')"
+apply auto
+done
+
+constdefs
+  mtriples  :: "('c \<Rightarrow> 'sig \<Rightarrow> 'a assn) \<Rightarrow> ('c \<Rightarrow> 'sig \<Rightarrow> expr) \<Rightarrow> 
+                ('c \<Rightarrow> 'sig \<Rightarrow> 'a assn) \<Rightarrow> ('c \<times>  'sig) set \<Rightarrow> 'a triples"
+                                     ("{{(1_)}/ _-\<succ>/ {(1_)} | _}"[3,65,3,65]75)
+ "{{P} tf-\<succ> {Q} | ms} \<equiv> (\<lambda>(C,sig). {Normal(P C sig)} tf C sig-\<succ> {Q C sig})`ms"
+  
+consts
+
+ triple_valid :: "prog \<Rightarrow> nat \<Rightarrow>        'a triple  \<Rightarrow> bool"
+                                                (   "_\<Turnstile>_:_" [61,0, 58] 57)
+    ax_valids :: "prog \<Rightarrow> 'b triples \<Rightarrow> 'a triples \<Rightarrow> bool"
+                                                ("_,_|\<Turnstile>_"   [61,58,58] 57)
+    ax_derivs :: "prog \<Rightarrow> ('b triples \<times> 'a triples) set"
+
+syntax
+
+ triples_valid:: "prog \<Rightarrow> nat \<Rightarrow>         'a triples \<Rightarrow> bool"
+                                                (  "_||=_:_" [61,0, 58] 57)
+     ax_valid :: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triple  \<Rightarrow> bool"
+                                                ( "_,_|=_"   [61,58,58] 57)
+     ax_Derivs:: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triples \<Rightarrow> bool"
+                                                ("_,_||-_"   [61,58,58] 57)
+     ax_Deriv :: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triple  \<Rightarrow> bool"
+                                                ( "_,_|-_"   [61,58,58] 57)
+
+syntax (xsymbols)
+
+ triples_valid:: "prog \<Rightarrow> nat \<Rightarrow>         'a triples \<Rightarrow> bool"
+                                                (  "_|\<Turnstile>_:_" [61,0, 58] 57)
+     ax_valid :: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triple  \<Rightarrow> bool"
+                                                ( "_,_\<Turnstile>_"   [61,58,58] 57)
+     ax_Derivs:: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triples \<Rightarrow> bool"
+                                                ("_,_|\<turnstile>_"   [61,58,58] 57)
+     ax_Deriv :: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triple  \<Rightarrow> bool"
+                                                ( "_,_\<turnstile>_"   [61,58,58] 57)
+
+defs  triple_valid_def:  "G\<Turnstile>n:t  \<equiv> case t of {P} t\<succ> {Q} \<Rightarrow>
+                          \<forall>Y s Z. P Y s Z \<longrightarrow> type_ok G t s \<longrightarrow>
+                          (\<forall>Y' s'. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (Y',s') \<longrightarrow> Q Y' s' Z)"
+translations         "G|\<Turnstile>n:ts" == "Ball ts (triple_valid G n)"
+defs   ax_valids_def:"G,A|\<Turnstile>ts  \<equiv>  \<forall>n. G|\<Turnstile>n:A \<longrightarrow> G|\<Turnstile>n:ts"
+translations         "G,A \<Turnstile>t"  == "G,A|\<Turnstile>{t}"
+                     "G,A|\<turnstile>ts" == "(A,ts) \<in> ax_derivs G"
+                     "G,A \<turnstile>t"  == "G,A|\<turnstile>{t}"
+
+lemma triple_valid_def2: "G\<Turnstile>n:{P} t\<succ> {Q} =  
+ (\<forall>Y s Z. P Y s Z 
+  \<longrightarrow> (\<exists>L. (normal s \<longrightarrow> (\<exists>T C. \<lparr>prg=G,cls=C,lcl=L\<rparr>\<turnstile>t\<Colon>T)) \<and> s\<Colon>\<preceq>(G,L)) \<longrightarrow> 
+  (\<forall>Y' s'. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (Y',s')\<longrightarrow> Q Y' s' Z))"
+apply (unfold triple_valid_def type_ok_def)
+apply (simp (no_asm))
+done
+
+
+declare split_paired_All [simp del] split_paired_Ex [simp del] 
+declare split_if     [split del] split_if_asm     [split del] 
+        option.split [split del] option.split_asm [split del]
+ML_setup {*
+simpset_ref() := simpset() delloop "split_all_tac";
+claset_ref () := claset () delSWrapper "split_all_tac"
+*}
+
+
+inductive "ax_derivs G" intros
+
+  empty: " G,A|\<turnstile>{}"
+  insert:"\<lbrakk>G,A\<turnstile>t; G,A|\<turnstile>ts\<rbrakk> \<Longrightarrow>
+          G,A|\<turnstile>insert t ts"
+
+  asm:   "ts\<subseteq>A \<Longrightarrow> G,A|\<turnstile>ts"
+
+(* could be added for convenience and efficiency, but is not necessary
+  cut:   "\<lbrakk>G,A'|\<turnstile>ts; G,A|\<turnstile>A'\<rbrakk> \<Longrightarrow>
+           G,A |\<turnstile>ts"
+*)
+  weaken:"\<lbrakk>G,A|\<turnstile>ts'; ts \<subseteq> ts'\<rbrakk> \<Longrightarrow> G,A|\<turnstile>ts"
+
+  conseq:"\<forall>Y s Z . P  Y s Z  \<longrightarrow> (\<exists>P' Q'. G,A\<turnstile>{P'} t\<succ> {Q'} \<and> (\<forall>Y' s'. 
+         (\<forall>Y   Z'. P' Y s Z' \<longrightarrow> Q' Y' s' Z') \<longrightarrow>
+                                 Q  Y' s' Z ))
+                                         \<Longrightarrow> G,A\<turnstile>{P } t\<succ> {Q }"
+
+  hazard:"G,A\<turnstile>{P \<and>. Not \<circ> type_ok G t} t\<succ> {Q}"
+
+  Abrupt:  "G,A\<turnstile>{P\<leftarrow>(arbitrary3 t) \<and>. Not \<circ> normal} t\<succ> {P}"
+
+  (* variables *)
+  LVar:  " G,A\<turnstile>{Normal (\<lambda>s.. P\<leftarrow>Var (lvar vn s))} LVar vn=\<succ> {P}"
+
+  FVar: "\<lbrakk>G,A\<turnstile>{Normal P} .Init C. {Q};
+          G,A\<turnstile>{Q} e-\<succ> {\<lambda>Val:a:. fvar C stat fn a ..; R}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} {C,stat}e..fn=\<succ> {R}"
+
+  AVar:  "\<lbrakk>G,A\<turnstile>{Normal P} e1-\<succ> {Q};
+          \<forall>a. G,A\<turnstile>{Q\<leftarrow>Val a} e2-\<succ> {\<lambda>Val:i:. avar G i a ..; R}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} e1.[e2]=\<succ> {R}"
+  (* expressions *)
+
+  NewC: "\<lbrakk>G,A\<turnstile>{Normal P} .Init C. {Alloc G (CInst C) Q}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} NewC C-\<succ> {Q}"
+
+  NewA: "\<lbrakk>G,A\<turnstile>{Normal P} .init_comp_ty T. {Q};  G,A\<turnstile>{Q} e-\<succ>
+	  {\<lambda>Val:i:. abupd (check_neg i) .; Alloc G (Arr T (the_Intg i)) R}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} New T[e]-\<succ> {R}"
+
+  Cast: "\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {\<lambda>Val:v:. \<lambda>s..
+          abupd (raise_if (\<not>G,s\<turnstile>v fits T) ClassCast) .; Q\<leftarrow>Val v}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} Cast T e-\<succ> {Q}"
+
+  Inst: "\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {\<lambda>Val:v:. \<lambda>s..
+                  Q\<leftarrow>Val (Bool (v\<noteq>Null \<and> G,s\<turnstile>v fits RefT T))}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} e InstOf T-\<succ> {Q}"
+
+  Lit:                          "G,A\<turnstile>{Normal (P\<leftarrow>Val v)} Lit v-\<succ> {P}"
+
+  Super:" G,A\<turnstile>{Normal (\<lambda>s.. P\<leftarrow>Val (val_this s))} Super-\<succ> {P}"
+
+  Acc:  "\<lbrakk>G,A\<turnstile>{Normal P} va=\<succ> {\<lambda>Var:(v,f):. Q\<leftarrow>Val v}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} Acc va-\<succ> {Q}"
+
+  Ass:  "\<lbrakk>G,A\<turnstile>{Normal P} va=\<succ> {Q};
+     \<forall>vf. G,A\<turnstile>{Q\<leftarrow>Var vf} e-\<succ> {\<lambda>Val:v:. assign (snd vf) v .; R}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} va:=e-\<succ> {R}"
+
+  Cond: "\<lbrakk>G,A \<turnstile>{Normal P} e0-\<succ> {P'};
+          \<forall>b. G,A\<turnstile>{P'\<leftarrow>=b} (if b then e1 else e2)-\<succ> {Q}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} e0 ? e1 : e2-\<succ> {Q}"
+
+  Call: 
+"\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {Q}; \<forall>a. G,A\<turnstile>{Q\<leftarrow>Val a} args\<doteq>\<succ> {R a};
+  \<forall>a vs invC declC l. G,A\<turnstile>{(R a\<leftarrow>Vals vs \<and>.
+ (\<lambda>s. declC=invocation_declclass G mode (store s) a statT \<lparr>name=mn,parTs=pTs\<rparr> \<and>
+      invC = invocation_class mode (store s) a statT \<and>
+         l = locals (store s)) ;.
+      init_lvars G declC \<lparr>name=mn,parTs=pTs\<rparr> mode a vs) \<and>.
+      (\<lambda>s. normal s \<longrightarrow> G\<turnstile>mode\<rightarrow>invC\<preceq>statT)}
+ Methd declC \<lparr>name=mn,parTs=pTs\<rparr>-\<succ> {set_lvars l .; S}\<rbrakk> \<Longrightarrow>
+         G,A\<turnstile>{Normal P} {statT,mode}e\<cdot>mn({pTs}args)-\<succ> {S}"
+
+  Methd:"\<lbrakk>G,A\<union> {{P} Methd-\<succ> {Q} | ms} |\<turnstile> {{P} body G-\<succ> {Q} | ms}\<rbrakk> \<Longrightarrow>
+                                 G,A|\<turnstile>{{P} Methd-\<succ>  {Q} | ms}"
+
+  Body: "\<lbrakk>G,A\<turnstile>{Normal P} .Init D. {Q}; 
+  G,A\<turnstile>{Q} .c. {\<lambda>s.. abupd (absorb Ret) .; R\<leftarrow>(In1 (the (locals s Result)))}\<rbrakk> 
+    \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} Body D c-\<succ> {R}"
+  
+  (* expression lists *)
+
+  Nil:                          "G,A\<turnstile>{Normal (P\<leftarrow>Vals [])} []\<doteq>\<succ> {P}"
+
+  Cons: "\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {Q};
+          \<forall>v. G,A\<turnstile>{Q\<leftarrow>Val v} es\<doteq>\<succ> {\<lambda>Vals:vs:. R\<leftarrow>Vals (v#vs)}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} e#es\<doteq>\<succ> {R}"
+
+  (* statements *)
+
+  Skip:                         "G,A\<turnstile>{Normal (P\<leftarrow>\<diamondsuit>)} .Skip. {P}"
+
+  Expr: "\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {Q\<leftarrow>\<diamondsuit>}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} .Expr e. {Q}"
+
+  Lab: "\<lbrakk>G,A\<turnstile>{Normal P} .c. {abupd (absorb (Break l)) .; Q}\<rbrakk> \<Longrightarrow>
+                           G,A\<turnstile>{Normal P} .l\<bullet> c. {Q}"
+
+  Comp: "\<lbrakk>G,A\<turnstile>{Normal P} .c1. {Q};
+          G,A\<turnstile>{Q} .c2. {R}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} .c1;;c2. {R}"
+
+  If:   "\<lbrakk>G,A \<turnstile>{Normal P} e-\<succ> {P'};
+          \<forall>b. G,A\<turnstile>{P'\<leftarrow>=b} .(if b then c1 else c2). {Q}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} .If(e) c1 Else c2. {Q}"
+(* unfolding variant of Loop, not needed here
+  LoopU:"\<lbrakk>G,A \<turnstile>{Normal P} e-\<succ> {P'};
+          \<forall>b. G,A\<turnstile>{P'\<leftarrow>=b} .(if b then c;;While(e) c else Skip).{Q}\<rbrakk>
+         \<Longrightarrow>              G,A\<turnstile>{Normal P} .While(e) c. {Q}"
+*)
+  Loop: "\<lbrakk>G,A\<turnstile>{P} e-\<succ> {P'}; 
+          G,A\<turnstile>{Normal (P'\<leftarrow>=True)} .c. {abupd (absorb (Cont l)) .; P}\<rbrakk> \<Longrightarrow>
+                            G,A\<turnstile>{P} .l\<bullet> While(e) c. {(P'\<leftarrow>=False)\<down>=\<diamondsuit>}"
+(** Beware of polymorphic_Loop below: should be identical terms **)
+  
+  Do: "G,A\<turnstile>{Normal (abupd (\<lambda>a. (Some (Jump j))) .; P\<leftarrow>\<diamondsuit>)} .Do j. {P}"
+
+  Throw:"\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {\<lambda>Val:a:. abupd (throw a) .; Q\<leftarrow>\<diamondsuit>}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} .Throw e. {Q}"
+
+  Try:  "\<lbrakk>G,A\<turnstile>{Normal P} .c1. {SXAlloc G Q};
+          G,A\<turnstile>{Q \<and>. (\<lambda>s.  G,s\<turnstile>catch C) ;. new_xcpt_var vn} .c2. {R};
+              (Q \<and>. (\<lambda>s. \<not>G,s\<turnstile>catch C)) \<Rightarrow> R\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} .Try c1 Catch(C vn) c2. {R}"
+
+  Fin:  "\<lbrakk>G,A\<turnstile>{Normal P} .c1. {Q};
+      \<forall>x. G,A\<turnstile>{Q \<and>. (\<lambda>s. x = fst s) ;. abupd (\<lambda>x. None)}
+              .c2. {abupd (abrupt_if (x\<noteq>None) x) .; R}\<rbrakk> \<Longrightarrow>
+                                 G,A\<turnstile>{Normal P} .c1 Finally c2. {R}"
+
+  Done:                       "G,A\<turnstile>{Normal (P\<leftarrow>\<diamondsuit> \<and>. initd C)} .Init C. {P}"
+
+  Init: "\<lbrakk>the (class G C) = c;
+          G,A\<turnstile>{Normal ((P \<and>. Not \<circ> initd C) ;. supd (init_class_obj G C))}
+              .(if C = Object then Skip else Init (super c)). {Q};
+      \<forall>l. G,A\<turnstile>{Q \<and>. (\<lambda>s. l = locals (store s)) ;. set_lvars empty}
+              .init c. {set_lvars l .; R}\<rbrakk> \<Longrightarrow>
+                               G,A\<turnstile>{Normal (P \<and>. Not \<circ> initd C)} .Init C. {R}"
+
+axioms (** these terms are the same as above, but with generalized typing **)
+  polymorphic_conseq:
+        "\<forall>Y s Z . P  Y s Z  \<longrightarrow> (\<exists>P' Q'. G,A\<turnstile>{P'} t\<succ> {Q'} \<and> (\<forall>Y' s'. 
+        (\<forall>Y   Z'. P' Y s Z' \<longrightarrow> Q' Y' s' Z') \<longrightarrow>
+                                Q  Y' s' Z ))
+                                         \<Longrightarrow> G,A\<turnstile>{P } t\<succ> {Q }"
+
+  polymorphic_Loop:
+        "\<lbrakk>G,A\<turnstile>{P} e-\<succ> {P'}; 
+          G,A\<turnstile>{Normal (P'\<leftarrow>=True)} .c. {abupd (absorb (Cont l)) .; P}\<rbrakk> \<Longrightarrow>
+                            G,A\<turnstile>{P} .l\<bullet> While(e) c. {(P'\<leftarrow>=False)\<down>=\<diamondsuit>}"
+
+constdefs
+ adapt_pre :: "'a assn \<Rightarrow> 'a assn \<Rightarrow> 'a assn \<Rightarrow> 'a assn"
+"adapt_pre P Q Q'\<equiv>\<lambda>Y s Z. \<forall>Y' s'. \<exists>Z'. P Y s Z' \<and> (Q Y' s' Z' \<longrightarrow> Q' Y' s' Z)"
+
+
+section "rules derived by induction"
+
+lemma cut_valid: "\<lbrakk>G,A'|\<Turnstile>ts; G,A|\<Turnstile>A'\<rbrakk> \<Longrightarrow> G,A|\<Turnstile>ts"
+apply (unfold ax_valids_def)
+apply fast
+done
+
+(*if cut is available
+Goal "\<lbrakk>G,A'|\<turnstile>ts; A' \<subseteq> A; \<forall>P Q t. {P} t\<succ> {Q} \<in> A' \<longrightarrow> (\<exists>T. (G,L)\<turnstile>t\<Colon>T) \<rbrakk> \<Longrightarrow>  
+       G,A|\<turnstile>ts"
+b y etac ax_derivs.cut 1;
+b y eatac ax_derivs.asm 1 1;
+qed "ax_thin";
+*)
+lemma ax_thin [rule_format (no_asm)]: 
+  "G,(A'::'a triple set)|\<turnstile>(ts::'a triple set) \<Longrightarrow> \<forall>A. A' \<subseteq> A \<longrightarrow> G,A|\<turnstile>ts"
+apply (erule ax_derivs.induct)
+apply                (tactic "ALLGOALS(EVERY'[Clarify_tac,REPEAT o smp_tac 1])")
+apply                (rule ax_derivs.empty)
+apply               (erule (1) ax_derivs.insert)
+apply              (fast intro: ax_derivs.asm)
+(*apply           (fast intro: ax_derivs.cut) *)
+apply            (fast intro: ax_derivs.weaken)
+apply           (rule ax_derivs.conseq, intro strip, tactic "smp_tac 3 1",clarify, tactic "smp_tac 1 1",rule exI, rule exI, erule (1) conjI)
+(* 31 subgoals *)
+prefer 16 (* Methd *)
+apply (rule ax_derivs.Methd, drule spec, erule mp, fast)
+apply (tactic {* TRYALL (resolve_tac ((funpow 5 tl) (thms "ax_derivs.intros")) 
+                     THEN_ALL_NEW Blast_tac) *})
+apply (erule ax_derivs.Call)
+apply   clarify 
+apply   blast
+
+apply   (rule allI)+ 
+apply   (drule spec)+
+apply   blast
+done
+
+lemma ax_thin_insert: "G,(A::'a triple set)\<turnstile>(t::'a triple) \<Longrightarrow> G,insert x A\<turnstile>t"
+apply (erule ax_thin)
+apply fast
+done
+
+lemma subset_mtriples_iff: 
+  "ts \<subseteq> {{P} mb-\<succ> {Q} | ms} = (\<exists>ms'. ms'\<subseteq>ms \<and>  ts = {{P} mb-\<succ> {Q} | ms'})"
+apply (unfold mtriples_def)
+apply (rule subset_image_iff)
+done
+
+lemma weaken: 
+ "G,(A::'a triple set)|\<turnstile>(ts'::'a triple set) \<Longrightarrow> !ts. ts \<subseteq> ts' \<longrightarrow> G,A|\<turnstile>ts"
+apply (erule ax_derivs.induct)
+(*36 subgoals*)
+apply       (tactic "ALLGOALS strip_tac")
+apply       (tactic {* ALLGOALS(REPEAT o (EVERY'[dtac (thm "subset_singletonD"),
+         etac disjE, fast_tac (claset() addSIs [thm "ax_derivs.empty"])]))*})
+apply       (tactic "TRYALL hyp_subst_tac")
+apply       (simp, rule ax_derivs.empty)
+apply      (drule subset_insertD)
+apply      (blast intro: ax_derivs.insert)
+apply     (fast intro: ax_derivs.asm)
+(*apply  (blast intro: ax_derivs.cut) *)
+apply   (fast intro: ax_derivs.weaken)
+apply  (rule ax_derivs.conseq, clarify, tactic "smp_tac 3 1", blast(* unused *))
+(*31 subgoals*)
+apply (tactic {* TRYALL (resolve_tac ((funpow 5 tl) (thms "ax_derivs.intros")) 
+                   THEN_ALL_NEW Fast_tac) *})
+(*1 subgoal*)
+apply (clarsimp simp add: subset_mtriples_iff)
+apply (rule ax_derivs.Methd)
+apply (drule spec)
+apply (erule impE)
+apply  (rule exI)
+apply  (erule conjI)
+apply  (rule HOL.refl)
+oops (* dead end, Methd is to blame *)
+
+
+section "rules derived from conseq"
+
+lemma conseq12: "\<lbrakk>G,A\<turnstile>{P'} t\<succ> {Q'};  
+ \<forall>Y s Z. P Y s Z \<longrightarrow> (\<forall>Y' s'. (\<forall>Y Z'. P' Y s Z' \<longrightarrow> Q' Y' s' Z') \<longrightarrow>  
+  Q Y' s' Z)\<rbrakk>  
+  \<Longrightarrow>  G,A\<turnstile>{P ::'a assn} t\<succ> {Q }"
+apply (rule polymorphic_conseq)
+apply clarsimp
+apply blast
+done
+
+(*unused, but nice variant*)
+lemma conseq12': "\<lbrakk>G,A\<turnstile>{P'} t\<succ> {Q'}; \<forall>s Y' s'.  
+       (\<forall>Y Z. P' Y s Z \<longrightarrow> Q' Y' s' Z) \<longrightarrow>  
+       (\<forall>Y Z. P  Y s Z \<longrightarrow> Q  Y' s' Z)\<rbrakk>  
+  \<Longrightarrow>  G,A\<turnstile>{P } t\<succ> {Q }"
+apply (erule conseq12)
+apply fast
+done
+
+lemma conseq12_from_conseq12': "\<lbrakk>G,A\<turnstile>{P'} t\<succ> {Q'};  
+ \<forall>Y s Z. P Y s Z \<longrightarrow> (\<forall>Y' s'. (\<forall>Y Z'. P' Y s Z' \<longrightarrow> Q' Y' s' Z') \<longrightarrow>  
+  Q Y' s' Z)\<rbrakk>  
+  \<Longrightarrow>  G,A\<turnstile>{P } t\<succ> {Q }"
+apply (erule conseq12')
+apply blast
+done
+
+lemma conseq1: "\<lbrakk>G,A\<turnstile>{P'} t\<succ> {Q}; P \<Rightarrow> P'\<rbrakk> \<Longrightarrow> G,A\<turnstile>{P } t\<succ> {Q}"
+apply (erule conseq12)
+apply blast
+done
+
+lemma conseq2: "\<lbrakk>G,A\<turnstile>{P} t\<succ> {Q'}; Q' \<Rightarrow> Q\<rbrakk> \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}"
+apply (erule conseq12)
+apply blast
+done
+
+lemma ax_escape: "\<lbrakk>\<forall>Y s Z. P Y s Z \<longrightarrow> G,A\<turnstile>{\<lambda>Y' s' Z'. (Y',s') = (Y,s)} t\<succ> {\<lambda>Y s Z'. Q Y s Z}\<rbrakk> \<Longrightarrow>  
+  G,A\<turnstile>{P} t\<succ> {Q}"
+apply (rule polymorphic_conseq)
+apply force
+done
+
+(* unused *)
+lemma ax_constant: "\<lbrakk> C \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}\<rbrakk> \<Longrightarrow> G,A\<turnstile>{\<lambda>Y s Z. C \<and> P Y s Z} t\<succ> {Q}"
+apply (rule ax_escape (* unused *))
+apply clarify
+apply (rule conseq12)
+apply  fast
+apply auto
+done
+(*alternative (more direct) proof:
+apply (rule ax_derivs.conseq) *)(* unused *)(*
+apply (fast)
+*)
+
+
+lemma ax_impossible [intro]: "G,A\<turnstile>{\<lambda>Y s Z. False} t\<succ> {Q}"
+apply (rule ax_escape)
+apply clarify
+done
+
+(* unused *)
+lemma ax_nochange_lemma: "\<lbrakk>P Y s; All (op = w)\<rbrakk> \<Longrightarrow> P w s"
+apply auto
+done
+lemma ax_nochange:"G,A\<turnstile>{\<lambda>Y s Z. (Y,s)=Z} t\<succ> {\<lambda>Y s Z. (Y,s)=Z} \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {P}"
+apply (erule conseq12)
+apply auto
+apply (erule (1) ax_nochange_lemma)
+done
+
+(* unused *)
+lemma ax_trivial: "G,A\<turnstile>{P}  t\<succ> {\<lambda>Y s Z. True}"
+apply (rule polymorphic_conseq(* unused *))
+apply auto
+done
+
+(* unused *)
+lemma ax_disj: "\<lbrakk>G,A\<turnstile>{P1} t\<succ> {Q1}; G,A\<turnstile>{P2} t\<succ> {Q2}\<rbrakk> \<Longrightarrow>  
+  G,A\<turnstile>{\<lambda>Y s Z. P1 Y s Z \<or> P2 Y s Z} t\<succ> {\<lambda>Y s Z. Q1 Y s Z \<or> Q2 Y s Z}"
+apply (rule ax_escape (* unused *))
+apply safe
+apply  (erule conseq12, fast)+
+done
+
+(* unused *)
+lemma ax_supd_shuffle: "(\<exists>Q. G,A\<turnstile>{P} .c1. {Q} \<and> G,A\<turnstile>{Q ;. f} .c2. {R}) =  
+       (\<exists>Q'. G,A\<turnstile>{P} .c1. {f .; Q'} \<and> G,A\<turnstile>{Q'} .c2. {R})"
+apply (best elim!: conseq1 conseq2)
+done
+
+lemma ax_cases: "\<lbrakk>G,A\<turnstile>{P \<and>.       C} t\<succ> {Q};  
+                       G,A\<turnstile>{P \<and>. Not \<circ> C} t\<succ> {Q}\<rbrakk> \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}"
+apply (unfold peek_and_def)
+apply (rule ax_escape)
+apply clarify
+apply (case_tac "C s")
+apply  (erule conseq12, force)+
+done
+(*alternative (more direct) proof:
+apply (rule rtac ax_derivs.conseq) *)(* unused *)(*
+apply clarify
+apply (case_tac "C s")
+apply  force+
+*)
+
+lemma ax_adapt: "G,A\<turnstile>{P} t\<succ> {Q} \<Longrightarrow> G,A\<turnstile>{adapt_pre P Q Q'} t\<succ> {Q'}"
+apply (unfold adapt_pre_def)
+apply (erule conseq12)
+apply fast
+done
+
+lemma adapt_pre_adapts: "G,A\<Turnstile>{P} t\<succ> {Q} \<longrightarrow> G,A\<Turnstile>{adapt_pre P Q Q'} t\<succ> {Q'}"
+apply (unfold adapt_pre_def)
+apply (simp add: ax_valids_def triple_valid_def2)
+apply fast
+done
+
+
+lemma adapt_pre_weakest: 
+"\<forall>G (A::'a triple set) t. G,A\<Turnstile>{P} t\<succ> {Q} \<longrightarrow> G,A\<Turnstile>{P'} t\<succ> {Q'} \<Longrightarrow>  
+  P' \<Rightarrow> adapt_pre P Q (Q'::'a assn)"
+apply (unfold adapt_pre_def)
+apply (drule spec)
+apply (drule_tac x = "{}" in spec)
+apply (drule_tac x = "In1r Skip" in spec)
+apply (simp add: ax_valids_def triple_valid_def2)
+oops
+
+(*
+Goal "\<forall>(A::'a triple set) t. G,A\<Turnstile>{P} t\<succ> {Q} \<longrightarrow> G,A\<Turnstile>{P'} t\<succ> {Q'} \<Longrightarrow>  
+  wf_prog G \<Longrightarrow> G,(A::'a triple set)\<turnstile>{P} t\<succ> {Q::'a assn} \<Longrightarrow> G,A\<turnstile>{P'} t\<succ> {Q'::'a assn}"
+b y fatac ax_sound 1 1;
+b y asm_full_simp_tac (simpset() addsimps [ax_valids_def,triple_valid_def2]) 1;
+b y rtac ax_no_hazard 1; 
+b y etac conseq12 1;
+b y Clarify_tac 1;
+b y case_tac "\<forall>Z. \<not>P Y s Z" 1;
+b y smp_tac 2 1;
+b y etac thin_rl 1;
+b y etac thin_rl 1;
+b y clarsimp_tac (claset(), simpset() addsimps [type_ok_def]) 1;
+b y subgoal_tac "G|\<Turnstile>n:A" 1;
+b y smp_tac 1 1;
+b y smp_tac 3 1;
+b y etac impE 1;
+ back();
+ b y Fast_tac 1;
+b y 
+b y rotate_tac 2 1;
+b y etac thin_rl 1;
+b y  etac thin_rl 2;
+b y  etac thin_rl 2;
+b y  Clarify_tac 2;
+b y  dtac spec 2;
+b y  EVERY'[dtac spec, mp_tac] 2;
+b y  thin_tac "\<forall>n Y s Z. ?PP n Y s Z" 2;
+b y  thin_tac "P' Y s Z" 2;
+b y  Blast_tac 2;
+b y smp_tac 3 1;
+b y case_tac "\<forall>Z. \<not>P Y s Z" 1;
+b y dres_inst_tac [("x","In1r Skip")] spec 1;
+b y Full_simp_tac 1;
+*)
+
+lemma peek_and_forget1_Normal: 
+ "G,A\<turnstile>{Normal P} t\<succ> {Q} \<Longrightarrow> G,A\<turnstile>{Normal (P \<and>. p)} t\<succ> {Q}"
+apply (erule conseq1)
+apply (simp (no_asm))
+done
+
+lemma peek_and_forget1: "G,A\<turnstile>{P} t\<succ> {Q} \<Longrightarrow> G,A\<turnstile>{P \<and>. p} t\<succ> {Q}"
+apply (erule conseq1)
+apply (simp (no_asm))
+done
+
+lemmas ax_NormalD = peek_and_forget1 [of _ _ _ _ _ normal] 
+
+lemma peek_and_forget2: "G,A\<turnstile>{P} t\<succ> {Q \<and>. p} \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}"
+apply (erule conseq2)
+apply (simp (no_asm))
+done
+
+lemma ax_subst_Val_allI: "\<forall>v. G,A\<turnstile>{(P'               v )\<leftarrow>Val v} t\<succ> {Q v} \<Longrightarrow>  
+      \<forall>v. G,A\<turnstile>{(\<lambda>w:. P' (the_In1 w))\<leftarrow>Val v} t\<succ> {Q v}"
+apply (force elim!: conseq1)
+done
+
+lemma ax_subst_Var_allI: "\<forall>v. G,A\<turnstile>{(P'               v )\<leftarrow>Var v} t\<succ> {Q v} \<Longrightarrow>  
+      \<forall>v. G,A\<turnstile>{(\<lambda>w:. P' (the_In2 w))\<leftarrow>Var v} t\<succ> {Q v}"
+apply (force elim!: conseq1)
+done
+
+lemma ax_subst_Vals_allI: "(\<forall>v. G,A\<turnstile>{(     P'          v )\<leftarrow>Vals v} t\<succ> {Q v}) \<Longrightarrow>  
+       \<forall>v. G,A\<turnstile>{(\<lambda>w:. P' (the_In3 w))\<leftarrow>Vals v} t\<succ> {Q v}"
+apply (force elim!: conseq1)
+done
+
+
+section "alternative axioms"
+
+lemma ax_Lit2: 
+  "G,(A::'a triple set)\<turnstile>{Normal P::'a assn} Lit v-\<succ> {Normal (P\<down>=Val v)}"
+apply (rule ax_derivs.Lit [THEN conseq1])
+apply force
+done
+lemma ax_Lit2_test_complete: 
+  "G,(A::'a triple set)\<turnstile>{Normal (P\<leftarrow>Val v)::'a assn} Lit v-\<succ> {P}"
+apply (rule ax_Lit2 [THEN conseq2])
+apply force
+done
+
+lemma ax_LVar2: "G,(A::'a triple set)\<turnstile>{Normal P::'a assn} LVar vn=\<succ> {Normal (\<lambda>s.. P\<down>=Var (lvar vn s))}"
+apply (rule ax_derivs.LVar [THEN conseq1])
+apply force
+done
+
+lemma ax_Super2: "G,(A::'a triple set)\<turnstile>
+  {Normal P::'a assn} Super-\<succ> {Normal (\<lambda>s.. P\<down>=Val (val_this s))}"
+apply (rule ax_derivs.Super [THEN conseq1])
+apply force
+done
+
+lemma ax_Nil2: 
+  "G,(A::'a triple set)\<turnstile>{Normal P::'a assn} []\<doteq>\<succ> {Normal (P\<down>=Vals [])}"
+apply (rule ax_derivs.Nil [THEN conseq1])
+apply force
+done
+
+
+section "misc derived structural rules"
+
+(* unused *)
+lemma ax_finite_mtriples_lemma: "\<lbrakk>F \<subseteq> ms; finite ms; \<forall>(C,sig)\<in>ms. 
+    G,(A::'a triple set)\<turnstile>{Normal (P C sig)::'a assn} mb C sig-\<succ> {Q C sig}\<rbrakk> \<Longrightarrow> 
+       G,A|\<turnstile>{{P} mb-\<succ> {Q} | F}"
+apply (frule (1) finite_subset)
+apply (erule make_imp)
+apply (erule thin_rl)
+apply (erule finite_induct)
+apply  (unfold mtriples_def)
+apply  (clarsimp intro!: ax_derivs.empty ax_derivs.insert)+
+apply force
+done
+lemmas ax_finite_mtriples = ax_finite_mtriples_lemma [OF subset_refl]
+
+lemma ax_derivs_insertD: 
+ "G,(A::'a triple set)|\<turnstile>insert (t::'a triple) ts \<Longrightarrow> G,A\<turnstile>t \<and> G,A|\<turnstile>ts"
+apply (fast intro: ax_derivs.weaken)
+done
+
+lemma ax_methods_spec: 
+"\<lbrakk>G,(A::'a triple set)|\<turnstile>split f ` ms; (C,sig) \<in> ms\<rbrakk>\<Longrightarrow> G,A\<turnstile>((f C sig)::'a triple)"
+apply (erule ax_derivs.weaken)
+apply (force del: image_eqI intro: rev_image_eqI)
+done
+
+(* this version is used to avoid using the cut rule *)
+lemma ax_finite_pointwise_lemma [rule_format]: "\<lbrakk>F \<subseteq> ms; finite ms\<rbrakk> \<Longrightarrow>  
+  ((\<forall>(C,sig)\<in>F. G,(A::'a triple set)\<turnstile>(f C sig::'a triple)) \<longrightarrow> (\<forall>(C,sig)\<in>ms. G,A\<turnstile>(g C sig::'a triple))) \<longrightarrow>  
+      G,A|\<turnstile>split f ` F \<longrightarrow> G,A|\<turnstile>split g ` F"
+apply (frule (1) finite_subset)
+apply (erule make_imp)
+apply (erule thin_rl)
+apply (erule finite_induct)
+apply  clarsimp+
+apply (drule ax_derivs_insertD)
+apply (rule ax_derivs.insert)
+apply  (simp (no_asm_simp) only: split_tupled_all)
+apply  (auto elim: ax_methods_spec)
+done
+lemmas ax_finite_pointwise = ax_finite_pointwise_lemma [OF subset_refl]
+ 
+lemma ax_no_hazard: 
+  "G,(A::'a triple set)\<turnstile>{P \<and>. type_ok G t} t\<succ> {Q::'a assn} \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}"
+apply (erule ax_cases)
+apply (rule ax_derivs.hazard [THEN conseq1])
+apply force
+done
+
+lemma ax_free_wt: 
+ "(\<exists>T L C. \<lparr>prg=G,cls=C,lcl=L\<rparr>\<turnstile>t\<Colon>T) 
+  \<longrightarrow> G,(A::'a triple set)\<turnstile>{Normal P} t\<succ> {Q::'a assn} \<Longrightarrow> 
+  G,A\<turnstile>{Normal P} t\<succ> {Q}"
+apply (rule ax_no_hazard)
+apply (rule ax_escape)
+apply clarify
+apply (erule mp [THEN conseq12])
+apply  (auto simp add: type_ok_def)
+done
+
+ML {*
+bind_thms ("ax_Abrupts", sum3_instantiate (thm "ax_derivs.Abrupt"))
+*}
+declare ax_Abrupts [intro!]
+
+lemmas ax_Normal_cases = ax_cases [of _ _ normal]
+
+lemma ax_Skip [intro!]: "G,(A::'a triple set)\<turnstile>{P\<leftarrow>\<diamondsuit>} .Skip. {P::'a assn}"
+apply (rule ax_Normal_cases)
+apply  (rule ax_derivs.Skip)
+apply fast
+done
+lemmas ax_SkipI = ax_Skip [THEN conseq1, standard]
+
+
+section "derived rules for methd call"
+
+lemma ax_Call_known_DynT: 
+"\<lbrakk>G\<turnstile>IntVir\<rightarrow>C\<preceq>statT; 
+  \<forall>a vs l. G,A\<turnstile>{(R a\<leftarrow>Vals vs \<and>. (\<lambda>s. l = locals (store s)) ;.
+  init_lvars G C \<lparr>name=mn,parTs=pTs\<rparr> IntVir a vs)} 
+    Methd C \<lparr>name=mn,parTs=pTs\<rparr>-\<succ> {set_lvars l .; S}; 
+  \<forall>a. G,A\<turnstile>{Q\<leftarrow>Val a} args\<doteq>\<succ>  
+       {R a \<and>. (\<lambda>s. C = obj_class (the (heap (store s) (the_Addr a))) \<and>
+                     C = invocation_declclass 
+                            G IntVir (store s) a statT \<lparr>name=mn,parTs=pTs\<rparr> )};  
+       G,(A::'a triple set)\<turnstile>{Normal P} e-\<succ> {Q::'a assn}\<rbrakk>  
+   \<Longrightarrow> G,A\<turnstile>{Normal P} {statT,IntVir}e\<cdot>mn({pTs}args)-\<succ> {S}"
+apply (erule ax_derivs.Call)
+apply  safe
+apply  (erule spec)
+apply (rule ax_escape, clarsimp)
+apply (drule spec, drule spec, drule spec,erule conseq12)
+apply force
+done
+
+
+lemma ax_Call_Static: 
+ "\<lbrakk>\<forall>a vs l. G,A\<turnstile>{R a\<leftarrow>Vals vs \<and>. (\<lambda>s. l = locals (store s)) ;.  
+               init_lvars G C \<lparr>name=mn,parTs=pTs\<rparr> Static any_Addr vs}  
+              Methd C \<lparr>name=mn,parTs=pTs\<rparr>-\<succ> {set_lvars l .; S}; 
+  G,A\<turnstile>{Normal P} e-\<succ> {Q};
+  \<forall> a. G,(A::'a triple set)\<turnstile>{Q\<leftarrow>Val a} args\<doteq>\<succ> {(R::val \<Rightarrow> 'a assn)  a 
+  \<and>. (\<lambda> s. C=invocation_declclass 
+                G Static (store s) a statT \<lparr>name=mn,parTs=pTs\<rparr>)}
+\<rbrakk>  \<Longrightarrow>  G,A\<turnstile>{Normal P} {statT,Static}e\<cdot>mn({pTs}args)-\<succ> {S}"
+apply (erule ax_derivs.Call)
+apply  safe
+apply  (erule spec)
+apply (rule ax_escape, clarsimp)
+apply (erule_tac V = "?P \<longrightarrow> ?Q" in thin_rl)
+apply (drule spec,drule spec,drule spec, erule conseq12)
+apply (force simp add: init_lvars_def)
+done
+
+lemma ax_Methd1: 
+ "\<lbrakk>G,A\<union>{{P} Methd-\<succ> {Q} | ms}|\<turnstile> {{P} body G-\<succ> {Q} | ms}; (C,sig)\<in> ms\<rbrakk> \<Longrightarrow> 
+       G,A\<turnstile>{Normal (P C sig)} Methd C sig-\<succ> {Q C sig}"
+apply (drule ax_derivs.Methd)
+apply (unfold mtriples_def)
+apply (erule (1) ax_methods_spec)
+done
+
+lemma ax_MethdN: 
+"G,insert({Normal P} Methd  C sig-\<succ> {Q}) A\<turnstile> 
+          {Normal P} body G C sig-\<succ> {Q} \<Longrightarrow>  
+      G,A\<turnstile>{Normal P} Methd   C sig-\<succ> {Q}"
+apply (rule ax_Methd1)
+apply  (rule_tac [2] singletonI)
+apply (unfold mtriples_def)
+apply clarsimp
+done
+
+lemma ax_StatRef: 
+  "G,(A::'a triple set)\<turnstile>{Normal (P\<leftarrow>Val Null)} StatRef rt-\<succ> {P::'a assn}"
+apply (rule ax_derivs.Cast)
+apply (rule ax_Lit2 [THEN conseq2])
+apply clarsimp
+done
+
+section "rules derived from Init and Done"
+
+  lemma ax_InitS: "\<lbrakk>the (class G C) = c; C \<noteq> Object;  
+     \<forall>l. G,A\<turnstile>{Q \<and>. (\<lambda>s. l = locals (store s)) ;. set_lvars empty}  
+            .init c. {set_lvars l .; R};   
+         G,A\<turnstile>{Normal ((P \<and>. Not \<circ> initd C) ;. supd (init_class_obj G C))}  
+  .Init (super c). {Q}\<rbrakk> \<Longrightarrow>  
+  G,(A::'a triple set)\<turnstile>{Normal (P \<and>. Not \<circ> initd C)} .Init C. {R::'a assn}"
+apply (erule ax_derivs.Init)
+apply  (simp (no_asm_simp))
+apply assumption
+done
+
+lemma ax_Init_Skip_lemma: 
+"\<forall>l. G,(A::'a triple set)\<turnstile>{P\<leftarrow>\<diamondsuit> \<and>. (\<lambda>s. l = locals (store s)) ;. set_lvars l'}
+  .Skip. {(set_lvars l .; P)::'a assn}"
+apply (rule allI)
+apply (rule ax_SkipI)
+apply clarsimp
+done
+
+lemma ax_triv_InitS: "\<lbrakk>the (class G C) = c;init c = Skip; C \<noteq> Object; 
+       P\<leftarrow>\<diamondsuit> \<Rightarrow> (supd (init_class_obj G C) .; P);  
+       G,A\<turnstile>{Normal (P \<and>. initd C)} .Init (super c). {(P \<and>. initd C)\<leftarrow>\<diamondsuit>}\<rbrakk> \<Longrightarrow>  
+       G,(A::'a triple set)\<turnstile>{Normal P\<leftarrow>\<diamondsuit>} .Init C. {(P \<and>. initd C)::'a assn}"
+apply (rule_tac C = "initd C" in ax_cases)
+apply  (rule conseq1, rule ax_derivs.Done, clarsimp)
+apply (simp (no_asm))
+apply (erule (1) ax_InitS)
+apply  simp
+apply  (rule ax_Init_Skip_lemma)
+apply (erule conseq1)
+apply force
+done
+
+lemma ax_Init_Object: "wf_prog G \<Longrightarrow> G,(A::'a triple set)\<turnstile>
+  {Normal ((supd (init_class_obj G Object) .; P\<leftarrow>\<diamondsuit>) \<and>. Not \<circ> initd Object)} 
+       .Init Object. {(P \<and>. initd Object)::'a assn}"
+apply (rule ax_derivs.Init)
+apply   (drule class_Object, force)
+apply (simp_all (no_asm))
+apply (rule_tac [2] ax_Init_Skip_lemma)
+apply (rule ax_SkipI, force)
+done
+
+lemma ax_triv_Init_Object: "\<lbrakk>wf_prog G;  
+       (P::'a assn) \<Rightarrow> (supd (init_class_obj G Object) .; P)\<rbrakk> \<Longrightarrow>  
+  G,(A::'a triple set)\<turnstile>{Normal P\<leftarrow>\<diamondsuit>} .Init Object. {P \<and>. initd Object}"
+apply (rule_tac C = "initd Object" in ax_cases)
+apply  (rule conseq1, rule ax_derivs.Done, clarsimp)
+apply (erule ax_Init_Object [THEN conseq1])
+apply force
+done
+
+
+section "introduction rules for Alloc and SXAlloc"
+
+lemma ax_SXAlloc_Normal: "G,A\<turnstile>{P} .c. {Normal Q} \<Longrightarrow> G,A\<turnstile>{P} .c. {SXAlloc G Q}"
+apply (erule conseq2)
+apply (clarsimp elim!: sxalloc_elim_cases simp add: split_tupled_all)
+done
+
+lemma ax_Alloc: 
+  "G,A\<turnstile>{P} t\<succ> {Normal (\<lambda>Y (x,s) Z. (\<forall>a. new_Addr (heap s) = Some a \<longrightarrow>  
+ Q (Val (Addr a)) (Norm(init_obj G (CInst C) (Heap a) s)) Z)) \<and>. 
+    heap_free (Suc (Suc 0))}
+   \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Alloc G (CInst C) Q}"
+apply (erule conseq2)
+apply (auto elim!: halloc_elim_cases)
+done
+
+lemma ax_Alloc_Arr: 
+ "G,A\<turnstile>{P} t\<succ> {\<lambda>Val:i:. Normal (\<lambda>Y (x,s) Z. \<not>the_Intg i<0 \<and>  
+  (\<forall>a. new_Addr (heap s) = Some a \<longrightarrow>  
+  Q (Val (Addr a)) (Norm (init_obj G (Arr T (the_Intg i)) (Heap a) s)) Z)) \<and>. 
+   heap_free (Suc (Suc 0))} \<Longrightarrow>  
+ G,A\<turnstile>{P} t\<succ> {\<lambda>Val:i:. abupd (check_neg i) .; Alloc G (Arr T(the_Intg i)) Q}"
+apply (erule conseq2)
+apply (auto elim!: halloc_elim_cases)
+done
+
+lemma ax_SXAlloc_catch_SXcpt: 
+ "\<lbrakk>G,A\<turnstile>{P} t\<succ> {(\<lambda>Y (x,s) Z. x=Some (Xcpt (Std xn)) \<and>  
+  (\<forall>a. new_Addr (heap s) = Some a \<longrightarrow>  
+  Q Y (Some (Xcpt (Loc a)),init_obj G (CInst (SXcpt xn)) (Heap a) s) Z))  
+  \<and>. heap_free (Suc (Suc 0))}\<rbrakk> \<Longrightarrow>  
+  G,A\<turnstile>{P} t\<succ> {SXAlloc G (\<lambda>Y s Z. Q Y s Z \<and> G,s\<turnstile>catch SXcpt xn)}"
+apply (erule conseq2)
+apply (auto elim!: sxalloc_elim_cases halloc_elim_cases)
+done
+
+end