src/HOL/Library/Binomial.thy
changeset 50240 019d642d422d
parent 50224 aacd6da09825
child 52903 6c89225ddeba
--- a/src/HOL/Library/Binomial.thy	Mon Nov 26 21:46:04 2012 +0100
+++ b/src/HOL/Library/Binomial.thy	Tue Nov 27 10:56:31 2012 +0100
@@ -575,4 +575,16 @@
   finally show ?thesis .
 qed
 
+lemma binomial_le_pow:
+  assumes "r \<le> n" shows "n choose r \<le> n ^ r"
+proof -
+  have "n choose r \<le> fact n div fact (n - r)"
+    using `r \<le> n` by (subst binomial_fact_lemma[symmetric]) auto
+  with fact_div_fact_le_pow[OF assms] show ?thesis by auto
+qed
+
+lemma binomial_altdef_nat: "(k::nat) \<le> n \<Longrightarrow>
+    n choose k = fact n div (fact k * fact (n - k))"
+ by (subst binomial_fact_lemma[symmetric]) auto
+
 end