src/HOL/Prod.thy
changeset 10213 01c2744a3786
parent 10212 33fe2d701ddd
child 10214 77349ed89f45
--- a/src/HOL/Prod.thy	Thu Oct 12 18:38:23 2000 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,109 +0,0 @@
-(*  Title:      HOL/Prod.thy
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1992  University of Cambridge
-
-Ordered Pairs and the Cartesian product type.
-The unit type.
-*)
-
-Prod = Fun + equalities +
-
-
-(** products **)
-
-(* type definition *)
-
-constdefs
-  Pair_Rep      :: ['a, 'b] => ['a, 'b] => bool
-  "Pair_Rep == (%a b. %x y. x=a & y=b)"
-
-global
-
-typedef (Prod)
-  ('a, 'b) "*"          (infixr 20)
-    = "{f. ? a b. f = Pair_Rep (a::'a) (b::'b)}"
-
-syntax (symbols)
-  "*"           :: [type, type] => type         ("(_ \\<times>/ _)" [21, 20] 20)
-
-syntax (HTML output)
-  "*"           :: [type, type] => type         ("(_ \\<times>/ _)" [21, 20] 20)
-
-
-(* abstract constants and syntax *)
-
-consts
-  fst           :: "'a * 'b => 'a"
-  snd           :: "'a * 'b => 'b"
-  split         :: "[['a, 'b] => 'c, 'a * 'b] => 'c"
-  prod_fun      :: "['a => 'b, 'c => 'd, 'a * 'c] => 'b * 'd"
-  Pair          :: "['a, 'b] => 'a * 'b"
-  Sigma         :: "['a set, 'a => 'b set] => ('a * 'b) set"
-
-
-(* patterns -- extends pre-defined type "pttrn" used in abstractions *)
-
-nonterminals
-  tuple_args patterns
-
-syntax
-  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
-  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
-  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
-  "_pattern"    :: [pttrn, patterns] => pttrn           ("'(_,/ _')")
-  ""            :: pttrn => patterns                    ("_")
-  "_patterns"   :: [pttrn, patterns] => patterns        ("_,/ _")
-  "@Sigma"      :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"   ("(3SIGMA _:_./ _)" 10)
-  "@Times"      :: "['a set, 'a => 'b set] => ('a * 'b) set"    (infixr "<*>" 80)
-
-translations
-  "(x, y)"       == "Pair x y"
-  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
-  "%(x,y,zs).b"  == "split(%x (y,zs).b)"
-  "%(x,y).b"     == "split(%x y. b)"
-  "_abs (Pair x y) t" => "%(x,y).t"
-  (* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
-     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *)
-
-  "SIGMA x:A. B" => "Sigma A (%x. B)"
-  "A <*> B"      => "Sigma A (_K B)"
-
-syntax (symbols)
-  "@Sigma"      :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"   ("(3\\<Sigma> _\\<in>_./ _)" 10)
-  "@Times"      :: "['a set, 'a => 'b set] => ('a * 'b) set"    ("_ \\<times> _" [81, 80] 80)
-
-
-(* definitions *)
-
-local
-
-defs
-  Pair_def      "Pair a b == Abs_Prod(Pair_Rep a b)"
-  fst_def       "fst p == @a. ? b. p = (a, b)"
-  snd_def       "snd p == @b. ? a. p = (a, b)"
-  split_def     "split == (%c p. c (fst p) (snd p))"
-  prod_fun_def  "prod_fun f g == split(%x y.(f(x), g(y)))"
-  Sigma_def     "Sigma A B == UN x:A. UN y:B(x). {(x, y)}"
-
-
-
-(** unit **)
-
-global
-
-typedef  unit = "{True}"
-
-consts
-  "()"          :: unit                           ("'(')")
-
-local
-
-defs
-  Unity_def     "() == Abs_unit True"
-
-end
-
-ML
-
-val print_translation = [("Sigma", dependent_tr' ("@Sigma", "@Times"))];