src/HOL/MicroJava/BV/Opt.thy
changeset 33974 01dcd9b926bf
parent 33951 651028e34b5d
parent 33971 9c7fa7f76950
child 33975 c3b822d234f4
--- a/src/HOL/MicroJava/BV/Opt.thy	Fri Dec 04 11:44:57 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,295 +0,0 @@
-(*  Title:      HOL/MicroJava/BV/Opt.thy
-    ID:         $Id$
-    Author:     Tobias Nipkow
-    Copyright   2000 TUM
-
-More about options
-*)
-
-header {* \isaheader{More about Options} *}
-
-theory Opt
-imports Err
-begin
-
-constdefs
- le :: "'a ord \<Rightarrow> 'a option ord"
-"le r o1 o2 == case o2 of None \<Rightarrow> o1=None |
-                              Some y \<Rightarrow> (case o1 of None \<Rightarrow> True
-                                                  | Some x \<Rightarrow> x <=_r y)"
-
- opt :: "'a set \<Rightarrow> 'a option set"
-"opt A == insert None {x . ? y:A. x = Some y}"
-
- sup :: "'a ebinop \<Rightarrow> 'a option ebinop"
-"sup f o1 o2 ==  
- case o1 of None \<Rightarrow> OK o2 | Some x \<Rightarrow> (case o2 of None \<Rightarrow> OK o1
-     | Some y \<Rightarrow> (case f x y of Err \<Rightarrow> Err | OK z \<Rightarrow> OK (Some z)))"
-
- esl :: "'a esl \<Rightarrow> 'a option esl"
-"esl == %(A,r,f). (opt A, le r, sup f)"
-
-lemma unfold_le_opt:
-  "o1 <=_(le r) o2 = 
-  (case o2 of None \<Rightarrow> o1=None | 
-              Some y \<Rightarrow> (case o1 of None \<Rightarrow> True | Some x \<Rightarrow> x <=_r y))"
-apply (unfold lesub_def le_def)
-apply (rule refl)
-done
-
-lemma le_opt_refl:
-  "order r \<Longrightarrow> o1 <=_(le r) o1"
-by (simp add: unfold_le_opt split: option.split)
-
-lemma le_opt_trans [rule_format]:
-  "order r \<Longrightarrow> 
-   o1 <=_(le r) o2 \<longrightarrow> o2 <=_(le r) o3 \<longrightarrow> o1 <=_(le r) o3"
-apply (simp add: unfold_le_opt split: option.split)
-apply (blast intro: order_trans)
-done
-
-lemma le_opt_antisym [rule_format]:
-  "order r \<Longrightarrow> o1 <=_(le r) o2 \<longrightarrow> o2 <=_(le r) o1 \<longrightarrow> o1=o2"
-apply (simp add: unfold_le_opt split: option.split)
-apply (blast intro: order_antisym)
-done
-
-lemma order_le_opt [intro!,simp]:
-  "order r \<Longrightarrow> order(le r)"
-apply (subst Semilat.order_def)
-apply (blast intro: le_opt_refl le_opt_trans le_opt_antisym)
-done 
-
-lemma None_bot [iff]: 
-  "None <=_(le r) ox"
-apply (unfold lesub_def le_def)
-apply (simp split: option.split)
-done 
-
-lemma Some_le [iff]:
-  "(Some x <=_(le r) ox) = (? y. ox = Some y & x <=_r y)"
-apply (unfold lesub_def le_def)
-apply (simp split: option.split)
-done 
-
-lemma le_None [iff]:
-  "(ox <=_(le r) None) = (ox = None)";
-apply (unfold lesub_def le_def)
-apply (simp split: option.split)
-done 
-
-
-lemma OK_None_bot [iff]:
-  "OK None <=_(Err.le (le r)) x"
-  by (simp add: lesub_def Err.le_def le_def split: option.split err.split)
-
-lemma sup_None1 [iff]:
-  "x +_(sup f) None = OK x"
-  by (simp add: plussub_def sup_def split: option.split)
-
-lemma sup_None2 [iff]:
-  "None +_(sup f) x = OK x"
-  by (simp add: plussub_def sup_def split: option.split)
-
-
-lemma None_in_opt [iff]:
-  "None : opt A"
-by (simp add: opt_def)
-
-lemma Some_in_opt [iff]:
-  "(Some x : opt A) = (x:A)"
-apply (unfold opt_def)
-apply auto
-done 
-
-
-lemma semilat_opt [intro, simp]:
-  "\<And>L. err_semilat L \<Longrightarrow> err_semilat (Opt.esl L)"
-proof (unfold Opt.esl_def Err.sl_def, simp add: split_tupled_all)
-  
-  fix A r f
-  assume s: "semilat (err A, Err.le r, lift2 f)"
- 
-  let ?A0 = "err A"
-  let ?r0 = "Err.le r"
-  let ?f0 = "lift2 f"
-
-  from s
-  obtain
-    ord: "order ?r0" and
-    clo: "closed ?A0 ?f0" and
-    ub1: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. x <=_?r0 x +_?f0 y" and
-    ub2: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. y <=_?r0 x +_?f0 y" and
-    lub: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. \<forall>z\<in>?A0. x <=_?r0 z \<and> y <=_?r0 z \<longrightarrow> x +_?f0 y <=_?r0 z"
-    by (unfold semilat_def) simp
-
-  let ?A = "err (opt A)" 
-  let ?r = "Err.le (Opt.le r)"
-  let ?f = "lift2 (Opt.sup f)"
-
-  from ord
-  have "order ?r"
-    by simp
-
-  moreover
-
-  have "closed ?A ?f"
-  proof (unfold closed_def, intro strip)
-    fix x y    
-    assume x: "x : ?A" 
-    assume y: "y : ?A" 
-
-    { fix a b
-      assume ab: "x = OK a" "y = OK b"
-      
-      with x 
-      have a: "\<And>c. a = Some c \<Longrightarrow> c : A"
-        by (clarsimp simp add: opt_def)
-
-      from ab y
-      have b: "\<And>d. b = Some d \<Longrightarrow> d : A"
-        by (clarsimp simp add: opt_def)
-      
-      { fix c d assume "a = Some c" "b = Some d"
-        with ab x y
-        have "c:A & d:A"
-          by (simp add: err_def opt_def Bex_def)
-        with clo
-        have "f c d : err A"
-          by (simp add: closed_def plussub_def err_def lift2_def)
-        moreover
-        fix z assume "f c d = OK z"
-        ultimately
-        have "z : A" by simp
-      } note f_closed = this    
-
-      have "sup f a b : ?A"
-      proof (cases a)
-        case None
-        thus ?thesis
-          by (simp add: sup_def opt_def) (cases b, simp, simp add: b Bex_def)
-      next
-        case Some
-        thus ?thesis
-          by (auto simp add: sup_def opt_def Bex_def a b f_closed split: err.split option.split)
-      qed
-    }
-
-    thus "x +_?f y : ?A"
-      by (simp add: plussub_def lift2_def split: err.split)
-  qed
-    
-  moreover
-
-  { fix a b c 
-    assume "a \<in> opt A" "b \<in> opt A" "a +_(sup f) b = OK c" 
-    moreover
-    from ord have "order r" by simp
-    moreover
-    { fix x y z
-      assume "x \<in> A" "y \<in> A" 
-      hence "OK x \<in> err A \<and> OK y \<in> err A" by simp
-      with ub1 ub2
-      have "(OK x) <=_(Err.le r) (OK x) +_(lift2 f) (OK y) \<and>
-            (OK y) <=_(Err.le r) (OK x) +_(lift2 f) (OK y)"
-        by blast
-      moreover
-      assume "x +_f y = OK z"
-      ultimately
-      have "x <=_r z \<and> y <=_r z"
-        by (auto simp add: plussub_def lift2_def Err.le_def lesub_def)
-    }
-    ultimately
-    have "a <=_(le r) c \<and> b <=_(le r) c"
-      by (auto simp add: sup_def le_def lesub_def plussub_def 
-               dest: order_refl split: option.splits err.splits)
-  }
-     
-  hence "(\<forall>x\<in>?A. \<forall>y\<in>?A. x <=_?r x +_?f y) \<and> (\<forall>x\<in>?A. \<forall>y\<in>?A. y <=_?r x +_?f y)"
-    by (auto simp add: lesub_def plussub_def Err.le_def lift2_def split: err.split)
-
-  moreover
-
-  have "\<forall>x\<in>?A. \<forall>y\<in>?A. \<forall>z\<in>?A. x <=_?r z \<and> y <=_?r z \<longrightarrow> x +_?f y <=_?r z"
-  proof (intro strip, elim conjE)
-    fix x y z
-    assume xyz: "x : ?A" "y : ?A" "z : ?A"
-    assume xz: "x <=_?r z"
-    assume yz: "y <=_?r z"
-
-    { fix a b c
-      assume ok: "x = OK a" "y = OK b" "z = OK c"
-
-      { fix d e g
-        assume some: "a = Some d" "b = Some e" "c = Some g"
-        
-        with ok xyz
-        obtain "OK d:err A" "OK e:err A" "OK g:err A"
-          by simp
-        with lub
-        have "\<lbrakk> (OK d) <=_(Err.le r) (OK g); (OK e) <=_(Err.le r) (OK g) \<rbrakk>
-          \<Longrightarrow> (OK d) +_(lift2 f) (OK e) <=_(Err.le r) (OK g)"
-          by blast
-        hence "\<lbrakk> d <=_r g; e <=_r g \<rbrakk> \<Longrightarrow> \<exists>y. d +_f e = OK y \<and> y <=_r g"
-          by simp
-
-        with ok some xyz xz yz
-        have "x +_?f y <=_?r z"
-          by (auto simp add: sup_def le_def lesub_def lift2_def plussub_def Err.le_def)
-      } note this [intro!]
-
-      from ok xyz xz yz
-      have "x +_?f y <=_?r z"
-        by - (cases a, simp, cases b, simp, cases c, simp, blast)
-    }
-    
-    with xyz xz yz
-    show "x +_?f y <=_?r z"
-      by - (cases x, simp, cases y, simp, cases z, simp+)
-  qed
-
-  ultimately
-
-  show "semilat (?A,?r,?f)"
-    by (unfold semilat_def) simp
-qed 
-
-lemma top_le_opt_Some [iff]: 
-  "top (le r) (Some T) = top r T"
-apply (unfold top_def)
-apply (rule iffI)
- apply blast
-apply (rule allI)
-apply (case_tac "x")
-apply simp+
-done 
-
-lemma Top_le_conv:
-  "\<lbrakk> order r; top r T \<rbrakk> \<Longrightarrow> (T <=_r x) = (x = T)"
-apply (unfold top_def)
-apply (blast intro: order_antisym)
-done 
-
-
-lemma acc_le_optI [intro!]:
-  "acc r \<Longrightarrow> acc(le r)"
-apply (unfold acc_def lesub_def le_def lesssub_def)
-apply (simp add: wfP_eq_minimal split: option.split)
-apply clarify
-apply (case_tac "? a. Some a : Q")
- apply (erule_tac x = "{a . Some a : Q}" in allE)
- apply blast
-apply (case_tac "x")
- apply blast
-apply blast
-done 
-
-lemma option_map_in_optionI:
-  "\<lbrakk> ox : opt S; !x:S. ox = Some x \<longrightarrow> f x : S \<rbrakk> 
-  \<Longrightarrow> Option.map f ox : opt S";
-apply (unfold Option.map_def)
-apply (simp split: option.split)
-apply blast
-done 
-
-end