| changeset 55417 | 01fbfb60c33e | 
| parent 55129 | 26bd1cba3ab5 | 
| child 55467 | a5c9002bc54d | 
--- a/src/HOL/Library/Multiset.thy Wed Feb 12 08:35:57 2014 +0100 +++ b/src/HOL/Library/Multiset.thy Wed Feb 12 08:37:06 2014 +0100 @@ -955,6 +955,7 @@ lemma distinct_count_atmost_1: "distinct x = (! a. count (multiset_of x) a = (if a \<in> set x then 1 else 0))" apply (induct x, simp, rule iffI, simp_all) +apply (rename_tac a b) apply (rule conjI) apply (simp_all add: set_of_multiset_of [THEN sym] del: set_of_multiset_of) apply (erule_tac x = a in allE, simp, clarify)