src/HOL/Integ/Int.ML
changeset 5562 02261e6880d1
child 5582 a356fb49e69e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Integ/Int.ML	Fri Sep 25 13:57:01 1998 +0200
@@ -0,0 +1,200 @@
+(*  Title:      HOL/Integ/Int.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1998  University of Cambridge
+
+Type "int" is a linear order
+*)
+
+Goal "(w<z) = neg(w-z)";
+by (simp_tac (simpset() addsimps [zless_def]) 1);
+qed "zless_eq_neg";
+
+Goal "(w=z) = iszero(w-z)";
+by (simp_tac (simpset() addsimps [iszero_def, zdiff_eq_eq]) 1);
+qed "eq_eq_iszero";
+
+Goal "(w<=z) = (~ neg(z-w))";
+by (simp_tac (simpset() addsimps [zle_def, zless_def]) 1);
+qed "zle_eq_not_neg";
+
+(*This list of rewrites simplifies (in)equalities by subtracting the RHS
+  from the LHS, then using the cancellation simproc.  Use with zadd_ac.*)
+val zcompare_0_rls = 
+    [zdiff_def, zless_eq_neg, eq_eq_iszero, zle_eq_not_neg];
+
+
+(*** Monotonicity results ***)
+
+Goal "(v+z < w+z) = (v < (w::int))";
+by (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zadd_right_cancel_zless";
+
+Goal "(z+v < z+w) = (v < (w::int))";
+by (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zadd_left_cancel_zless";
+
+Addsimps [zadd_right_cancel_zless, zadd_left_cancel_zless];
+
+Goal "(v+z <= w+z) = (v <= (w::int))";
+by (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zadd_right_cancel_zle";
+
+Goal "(z+v <= z+w) = (v <= (w::int))";
+by (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zadd_left_cancel_zle";
+
+Addsimps [zadd_right_cancel_zle, zadd_left_cancel_zle];
+
+(*"v<=w ==> v+z <= w+z"*)
+bind_thm ("zadd_zless_mono1", zadd_right_cancel_zless RS iffD2);
+
+(*"v<=w ==> v+z <= w+z"*)
+bind_thm ("zadd_zle_mono1", zadd_right_cancel_zle RS iffD2);
+
+Goal "!!z z'::int. [| w'<=w; z'<=z |] ==> w' + z' <= w + z";
+by (etac (zadd_zle_mono1 RS zle_trans) 1);
+by (Simp_tac 1);
+qed "zadd_zle_mono";
+
+Goal "!!z z'::int. [| w'<w; z'<=z |] ==> w' + z' < w + z";
+by (etac (zadd_zless_mono1 RS zless_zle_trans) 1);
+by (Simp_tac 1);
+qed "zadd_zless_mono";
+
+
+(*** Comparison laws ***)
+
+Goal "(- x < - y) = (y < (x::int))";
+by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zminus_zless_zminus"; 
+Addsimps [zminus_zless_zminus];
+
+Goal "(- x <= - y) = (y <= (x::int))";
+by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zminus_zle_zminus"; 
+Addsimps [zminus_zle_zminus];
+
+(** The next several equations can make the simplifier loop! **)
+
+Goal "(x < - y) = (y < - (x::int))";
+by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zless_zminus"; 
+
+Goal "(- x < y) = (- y < (x::int))";
+by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zminus_zless"; 
+
+Goal "(x <= - y) = (y <= - (x::int))";
+by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zle_zminus"; 
+
+Goal "(- x <= y) = (- y <= (x::int))";
+by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "zminus_zle"; 
+
+Goal "- $# Suc n < $# 0";
+by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "negative_zless_0"; 
+
+Goal "- $# Suc n < $# m";
+by (rtac (negative_zless_0 RS zless_zle_trans) 1);
+by (Simp_tac 1); 
+qed "negative_zless"; 
+AddIffs [negative_zless]; 
+
+Goal "- $# n <= $#0";
+by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
+qed "negative_zle_0"; 
+
+Goal "- $# n <= $# m";
+by (simp_tac (simpset() addsimps add_nat :: zcompare_0_rls @ zadd_ac) 1);
+qed "negative_zle"; 
+AddIffs [negative_zle]; 
+
+Goal "~($# 0 <= - $# Suc n)";
+by (stac zle_zminus 1);
+by (Simp_tac 1);
+qed "not_zle_0_negative"; 
+Addsimps [not_zle_0_negative]; 
+
+Goal "($# n <= - $# m) = (n = 0 & m = 0)"; 
+by Safe_tac; 
+by (Simp_tac 3); 
+by (dtac (zle_zminus RS iffD1) 2); 
+by (ALLGOALS (dtac (negative_zle_0 RSN(2,zle_trans)))); 
+by (ALLGOALS Asm_full_simp_tac); 
+qed "int_zle_neg"; 
+
+Goal "~($# n < - $# m)";
+by (simp_tac (simpset() addsimps [symmetric zle_def]) 1); 
+qed "not_int_zless_negative"; 
+
+Goal "(- $# n = $# m) = (n = 0 & m = 0)"; 
+by (rtac iffI 1);
+by (rtac (int_zle_neg RS iffD1) 1); 
+by (dtac sym 1); 
+by (ALLGOALS Asm_simp_tac); 
+qed "negative_eq_positive"; 
+
+Addsimps [negative_eq_positive, not_int_zless_negative]; 
+
+
+Goal "(w <= z) = (EX n. z = w + $# n)";
+by (auto_tac (claset(),
+	      simpset() addsimps [zless_iff_Suc_zadd, integ_le_less]));
+by (ALLGOALS (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac)));
+by (ALLGOALS (full_simp_tac (simpset() addsimps [iszero_def])));
+by (blast_tac (claset() addIs [Suc_pred RS sym]) 1);
+qed "zle_iff_zadd";
+
+
+Goalw [zdiff_def,zless_def] "neg x = (x < $# 0)";
+by Auto_tac; 
+qed "neg_eq_less_nat0"; 
+
+Goalw [zle_def] "(~neg x) = ($# 0 <= x)";
+by (simp_tac (simpset() addsimps [neg_eq_less_nat0]) 1); 
+qed "not_neg_eq_ge_nat0"; 
+
+
+(**** nat: magnitide of an integer, as a natural number ****)
+
+Goalw [nat_def] "nat($# n) = n";
+by Auto_tac;
+qed "nat_nat";
+
+Goalw [nat_def] "nat(- $# n) = 0";
+by (auto_tac (claset(),
+	      simpset() addsimps [neg_eq_less_nat0, zminus_zless])); 
+qed "nat_zminus_nat";
+
+Addsimps [nat_nat, nat_zminus_nat];
+
+Goal "~ neg z ==> $# (nat z) = z"; 
+by (dtac (not_neg_eq_ge_nat0 RS iffD1) 1); 
+by (dtac zle_imp_zless_or_eq 1); 
+by (auto_tac (claset(), simpset() addsimps [zless_iff_Suc_zadd])); 
+qed "not_neg_nat"; 
+
+Goal "neg x ==> ? n. x = - $# Suc n"; 
+by (auto_tac (claset(), 
+	      simpset() addsimps [neg_eq_less_nat0, zless_iff_Suc_zadd,
+				  zdiff_eq_eq RS sym, zdiff_def])); 
+qed "negD"; 
+
+Goalw [nat_def] "neg z ==> nat z = 0"; 
+by Auto_tac; 
+qed "neg_nat"; 
+
+(* a case theorem distinguishing positive and negative int *)  
+
+val prems = Goal "[|!! n. P ($# n); !! n. P (- $# Suc n) |] ==> P z"; 
+by (case_tac "neg z" 1); 
+by (blast_tac (claset() addSDs [negD] addSIs prems) 1); 
+by (etac (not_neg_nat RS subst) 1);
+by (resolve_tac prems 1);
+qed "int_cases"; 
+
+fun int_case_tac x = res_inst_tac [("z",x)] int_cases; 
+