--- a/src/HOL/Integ/IntDef.ML Fri Sep 25 13:18:07 1998 +0200
+++ b/src/HOL/Integ/IntDef.ML Fri Sep 25 13:57:01 1998 +0200
@@ -81,11 +81,11 @@
qed "inj_Rep_Integ";
-(** nat: the injection from nat to Integ **)
+(** int: the injection from "nat" to "int" **)
-Goal "inj(nat)";
+Goal "inj int";
by (rtac injI 1);
-by (rewtac nat_def);
+by (rewtac int_def);
by (dtac (inj_on_Abs_Integ RS inj_onD) 1);
by (REPEAT (rtac intrel_in_integ 1));
by (dtac eq_equiv_class 1);
@@ -137,7 +137,7 @@
by (Asm_full_simp_tac 1);
qed "inj_zminus";
-Goalw [nat_def] "- ($# 0) = $# 0";
+Goalw [int_def] "- ($# 0) = $# 0";
by (simp_tac (simpset() addsimps [zminus]) 1);
qed "zminus_nat0";
@@ -147,12 +147,12 @@
(**** neg: the test for negative integers ****)
-Goalw [neg_def, nat_def] "~ neg($# n)";
+Goalw [neg_def, int_def] "~ neg($# n)";
by (Simp_tac 1);
by Safe_tac;
qed "not_neg_nat";
-Goalw [neg_def, nat_def] "neg(- $# Suc(n))";
+Goalw [neg_def, int_def] "neg(- $# Suc(n))";
by (simp_tac (simpset() addsimps [zminus]) 1);
qed "neg_zminus_nat";
@@ -214,15 +214,15 @@
(*Integer addition is an AC operator*)
val zadd_ac = [zadd_assoc,zadd_commute,zadd_left_commute];
-Goalw [nat_def] "($#m) + ($#n) = $# (m + n)";
+Goalw [int_def] "($#m) + ($#n) = $# (m + n)";
by (simp_tac (simpset() addsimps [zadd]) 1);
qed "add_nat";
Goal "$# (Suc m) = $# 1 + ($# m)";
by (simp_tac (simpset() addsimps [add_nat]) 1);
-qed "nat_Suc";
+qed "int_Suc";
-Goalw [nat_def] "$# 0 + z = z";
+Goalw [int_def] "$# 0 + z = z";
by (res_inst_tac [("z","z")] eq_Abs_Integ 1);
by (asm_simp_tac (simpset() addsimps [zadd]) 1);
qed "zadd_nat0";
@@ -232,7 +232,7 @@
by (rtac zadd_nat0 1);
qed "zadd_nat0_right";
-Goalw [nat_def] "z + (- z) = $# 0";
+Goalw [int_def] "z + (- z) = $# 0";
by (res_inst_tac [("z","z")] eq_Abs_Integ 1);
by (asm_simp_tac (simpset() addsimps [zminus, zadd, add_commute]) 1);
qed "zadd_zminus_inverse_nat";
@@ -362,12 +362,12 @@
by (simp_tac (simpset() addsimps [zmult_commute',zadd_zmult_distrib]) 1);
qed "zadd_zmult_distrib2";
-Goalw [nat_def] "$# 0 * z = $# 0";
+Goalw [int_def] "$# 0 * z = $# 0";
by (res_inst_tac [("z","z")] eq_Abs_Integ 1);
by (asm_simp_tac (simpset() addsimps [zmult]) 1);
qed "zmult_nat0";
-Goalw [nat_def] "$# 1 * z = z";
+Goalw [int_def] "$# 1 * z = z";
by (res_inst_tac [("z","z")] eq_Abs_Integ 1);
by (asm_simp_tac (simpset() addsimps [zmult]) 1);
qed "zmult_nat1";
@@ -393,7 +393,7 @@
(* Theorems about less and less_equal *)
(*This lemma allows direct proofs of other <-properties*)
-Goalw [zless_def, neg_def, zdiff_def, nat_def]
+Goalw [zless_def, neg_def, zdiff_def, int_def]
"(w < z) = (EX n. z = w + $#(Suc n))";
by (res_inst_tac [("z","z")] eq_Abs_Integ 1);
by (res_inst_tac [("z","w")] eq_Abs_Integ 1);
@@ -420,7 +420,7 @@
by (safe_tac (claset() addSDs [zless_iff_Suc_zadd RS iffD1]));
by (res_inst_tac [("z","z")] eq_Abs_Integ 1);
by Safe_tac;
-by (asm_full_simp_tac (simpset() addsimps [nat_def, zadd]) 1);
+by (asm_full_simp_tac (simpset() addsimps [int_def, zadd]) 1);
qed "zless_not_sym";
(* [| n<m; ~P ==> m<n |] ==> P *)
@@ -465,8 +465,8 @@
Goal "($# m = $# n) = (m = n)";
by (fast_tac (claset() addSEs [inj_nat RS injD]) 1);
-qed "nat_nat_eq";
-AddIffs [nat_nat_eq];
+qed "int_int_eq";
+AddIffs [int_int_eq];
Goal "($#m < $#n) = (m<n)";
by (simp_tac (simpset() addsimps [less_iff_Suc_add, zless_iff_Suc_zadd,
@@ -637,7 +637,7 @@
by (auto_tac (claset(),
simpset() addsimps [zless_iff_Suc_zadd, zadd_assoc,
add_nat]));
-by (cut_inst_tac [("m","n")] nat_Suc 1);
+by (cut_inst_tac [("m","n")] int_Suc 1);
by (exhaust_tac "n" 1);
by Auto_tac;
by (full_simp_tac (simpset() addsimps zadd_ac) 1);