src/Doc/HOL/document/HOL.tex
changeset 52552 0260bdba4dd7
parent 52551 f4fe75218cec
child 52553 d5d150d159ad
--- a/src/Doc/HOL/document/HOL.tex	Sun Jul 07 18:50:16 2013 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2089 +0,0 @@
-\chapter{Higher-Order Logic}
-\index{higher-order logic|(}
-\index{HOL system@{\sc hol} system}
-
-\begin{figure}
-\begin{constants}
-  \it name      &\it meta-type  & \it description \\
-  \cdx{Trueprop}& $bool\To prop$                & coercion to $prop$\\
-  \cdx{Not}     & $bool\To bool$                & negation ($\lnot$) \\
-  \cdx{True}    & $bool$                        & tautology ($\top$) \\
-  \cdx{False}   & $bool$                        & absurdity ($\bot$) \\
-  \cdx{If}      & $[bool,\alpha,\alpha]\To\alpha$ & conditional \\
-  \cdx{Let}     & $[\alpha,\alpha\To\beta]\To\beta$ & let binder
-\end{constants}
-\subcaption{Constants}
-
-\begin{constants}
-\index{"@@{\tt\at} symbol}
-\index{*"! symbol}\index{*"? symbol}
-\index{*"?"! symbol}\index{*"E"X"! symbol}
-  \it symbol &\it name     &\it meta-type & \it description \\
-  \sdx{SOME} or \tt\at & \cdx{Eps}  & $(\alpha\To bool)\To\alpha$ & 
-        Hilbert description ($\varepsilon$) \\
-  \sdx{ALL} or {\tt!~} & \cdx{All}  & $(\alpha\To bool)\To bool$ & 
-        universal quantifier ($\forall$) \\
-  \sdx{EX} or {\tt?~}  & \cdx{Ex}   & $(\alpha\To bool)\To bool$ & 
-        existential quantifier ($\exists$) \\
-  \texttt{EX!} or {\tt?!} & \cdx{Ex1}  & $(\alpha\To bool)\To bool$ & 
-        unique existence ($\exists!$)\\
-  \texttt{LEAST}  & \cdx{Least}  & $(\alpha::ord \To bool)\To\alpha$ & 
-        least element
-\end{constants}
-\subcaption{Binders} 
-
-\begin{constants}
-\index{*"= symbol}
-\index{&@{\tt\&} symbol}
-\index{"!@{\tt\char124} symbol} %\char124 is vertical bar. We use ! because | stopped working
-\index{*"-"-"> symbol}
-  \it symbol    & \it meta-type & \it priority & \it description \\ 
-  \sdx{o}       & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & 
-        Left 55 & composition ($\circ$) \\
-  \tt =         & $[\alpha,\alpha]\To bool$ & Left 50 & equality ($=$) \\
-  \tt <         & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\
-  \tt <=        & $[\alpha::ord,\alpha]\To bool$ & Left 50 & 
-                less than or equals ($\leq$)\\
-  \tt \&        & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\
-  \tt |         & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\
-  \tt -->       & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$)
-\end{constants}
-\subcaption{Infixes}
-\caption{Syntax of \texttt{HOL}} \label{hol-constants}
-\end{figure}
-
-
-\begin{figure}
-\index{*let symbol}
-\index{*in symbol}
-\dquotes
-\[\begin{array}{rclcl}
-    term & = & \hbox{expression of class~$term$} \\
-         & | & "SOME~" id " . " formula
-         & | & "\at~" id " . " formula \\
-         & | & 
-    \multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\
-         & | & 
-    \multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\
-         & | & "LEAST"~ id " . " formula \\[2ex]
- formula & = & \hbox{expression of type~$bool$} \\
-         & | & term " = " term \\
-         & | & term " \ttilde= " term \\
-         & | & term " < " term \\
-         & | & term " <= " term \\
-         & | & "\ttilde\ " formula \\
-         & | & formula " \& " formula \\
-         & | & formula " | " formula \\
-         & | & formula " --> " formula \\
-         & | & "ALL~" id~id^* " . " formula
-         & | & "!~~~" id~id^* " . " formula \\
-         & | & "EX~~" id~id^* " . " formula 
-         & | & "?~~~" id~id^* " . " formula \\
-         & | & "EX!~" id~id^* " . " formula
-         & | & "?!~~" id~id^* " . " formula \\
-  \end{array}
-\]
-\caption{Full grammar for HOL} \label{hol-grammar}
-\end{figure} 
-
-
-\section{Syntax}
-
-Figure~\ref{hol-constants} lists the constants (including infixes and
-binders), while Fig.\ts\ref{hol-grammar} presents the grammar of
-higher-order logic.  Note that $a$\verb|~=|$b$ is translated to
-$\lnot(a=b)$.
-
-\begin{warn}
-  HOL has no if-and-only-if connective; logical equivalence is expressed using
-  equality.  But equality has a high priority, as befitting a relation, while
-  if-and-only-if typically has the lowest priority.  Thus, $\lnot\lnot P=P$
-  abbreviates $\lnot\lnot (P=P)$ and not $(\lnot\lnot P)=P$.  When using $=$
-  to mean logical equivalence, enclose both operands in parentheses.
-\end{warn}
-
-\subsection{Types and overloading}
-The universal type class of higher-order terms is called~\cldx{term}.
-By default, explicit type variables have class \cldx{term}.  In
-particular the equality symbol and quantifiers are polymorphic over
-class \texttt{term}.
-
-The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus,
-formulae are terms.  The built-in type~\tydx{fun}, which constructs
-function types, is overloaded with arity {\tt(term,\thinspace
-  term)\thinspace term}.  Thus, $\sigma\To\tau$ belongs to class~{\tt
-  term} if $\sigma$ and~$\tau$ do, allowing quantification over
-functions.
-
-HOL allows new types to be declared as subsets of existing types,
-either using the primitive \texttt{typedef} or the more convenient
-\texttt{datatype} (see~{\S}\ref{sec:HOL:datatype}).
-
-Several syntactic type classes --- \cldx{plus}, \cldx{minus},
-\cldx{times} and
-\cldx{power} --- permit overloading of the operators {\tt+},\index{*"+
-  symbol} {\tt-}\index{*"- symbol}, {\tt*}.\index{*"* symbol} 
-and \verb|^|.\index{^@\verb.^. symbol} 
-%
-They are overloaded to denote the obvious arithmetic operations on types
-\tdx{nat}, \tdx{int} and~\tdx{real}. (With the \verb|^| operator, the
-exponent always has type~\tdx{nat}.)  Non-arithmetic overloadings are also
-done: the operator {\tt-} can denote set difference, while \verb|^| can
-denote exponentiation of relations (iterated composition).  Unary minus is
-also written as~{\tt-} and is overloaded like its 2-place counterpart; it even
-can stand for set complement.
-
-The constant \cdx{0} is also overloaded.  It serves as the zero element of
-several types, of which the most important is \tdx{nat} (the natural
-numbers).  The type class \cldx{plus_ac0} comprises all types for which 0
-and~+ satisfy the laws $x+y=y+x$, $(x+y)+z = x+(y+z)$ and $0+x = x$.  These
-types include the numeric ones \tdx{nat}, \tdx{int} and~\tdx{real} and also
-multisets.  The summation operator \cdx{setsum} is available for all types in
-this class. 
-
-Theory \thydx{Ord} defines the syntactic class \cldx{ord} of order
-signatures.  The relations $<$ and $\leq$ are polymorphic over this
-class, as are the functions \cdx{mono}, \cdx{min} and \cdx{max}, and
-the \cdx{LEAST} operator. \thydx{Ord} also defines a subclass
-\cldx{order} of \cldx{ord} which axiomatizes the types that are partially
-ordered with respect to~$\leq$.  A further subclass \cldx{linorder} of
-\cldx{order} axiomatizes linear orderings.
-For details, see the file \texttt{Ord.thy}.
-                                          
-If you state a goal containing overloaded functions, you may need to include
-type constraints.  Type inference may otherwise make the goal more
-polymorphic than you intended, with confusing results.  For example, the
-variables $i$, $j$ and $k$ in the goal $i \leq j \Imp i \leq j+k$ have type
-$\alpha::\{ord,plus\}$, although you may have expected them to have some
-numeric type, e.g. $nat$.  Instead you should have stated the goal as
-$(i::nat) \leq j \Imp i \leq j+k$, which causes all three variables to have
-type $nat$.
-
-\begin{warn}
-  If resolution fails for no obvious reason, try setting
-  \ttindex{show_types} to \texttt{true}, causing Isabelle to display
-  types of terms.  Possibly set \ttindex{show_sorts} to \texttt{true} as
-  well, causing Isabelle to display type classes and sorts.
-
-  \index{unification!incompleteness of}
-  Where function types are involved, Isabelle's unification code does not
-  guarantee to find instantiations for type variables automatically.  Be
-  prepared to use \ttindex{res_inst_tac} instead of \texttt{resolve_tac},
-  possibly instantiating type variables.  Setting
-  \ttindex{Unify.trace_types} to \texttt{true} causes Isabelle to report
-  omitted search paths during unification.\index{tracing!of unification}
-\end{warn}
-
-
-\subsection{Binders}
-
-Hilbert's {\bf description} operator~$\varepsilon x. P[x]$ stands for some~$x$
-satisfying~$P$, if such exists.  Since all terms in HOL denote something, a
-description is always meaningful, but we do not know its value unless $P$
-defines it uniquely.  We may write descriptions as \cdx{Eps}($\lambda x.
-P[x]$) or use the syntax \hbox{\tt SOME~$x$.~$P[x]$}.
-
-Existential quantification is defined by
-\[ \exists x. P~x \;\equiv\; P(\varepsilon x. P~x). \]
-The unique existence quantifier, $\exists!x. P$, is defined in terms
-of~$\exists$ and~$\forall$.  An Isabelle binder, it admits nested
-quantifications.  For instance, $\exists!x\,y. P\,x\,y$ abbreviates
-$\exists!x. \exists!y. P\,x\,y$; note that this does not mean that there
-exists a unique pair $(x,y)$ satisfying~$P\,x\,y$.
-
-\medskip
-
-\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system} The
-basic Isabelle/HOL binders have two notations.  Apart from the usual
-\texttt{ALL} and \texttt{EX} for $\forall$ and $\exists$, Isabelle/HOL also
-supports the original notation of Gordon's {\sc hol} system: \texttt{!}\ 
-and~\texttt{?}.  In the latter case, the existential quantifier \emph{must} be
-followed by a space; thus {\tt?x} is an unknown, while \verb'? x. f x=y' is a
-quantification.  Both notations are accepted for input.  The print mode
-``\ttindexbold{HOL}'' governs the output notation.  If enabled (e.g.\ by
-passing option \texttt{-m HOL} to the \texttt{isabelle} executable),
-then~{\tt!}\ and~{\tt?}\ are displayed.
-
-\medskip
-
-If $\tau$ is a type of class \cldx{ord}, $P$ a formula and $x$ a
-variable of type $\tau$, then the term \cdx{LEAST}~$x. P[x]$ is defined
-to be the least (w.r.t.\ $\leq$) $x$ such that $P~x$ holds (see
-Fig.~\ref{hol-defs}).  The definition uses Hilbert's $\varepsilon$
-choice operator, so \texttt{Least} is always meaningful, but may yield
-nothing useful in case there is not a unique least element satisfying
-$P$.\footnote{Class $ord$ does not require much of its instances, so
-  $\leq$ need not be a well-ordering, not even an order at all!}
-
-\medskip All these binders have priority 10.
-
-\begin{warn}
-The low priority of binders means that they need to be enclosed in
-parenthesis when they occur in the context of other operations.  For example,
-instead of $P \land \forall x. Q$ you need to write $P \land (\forall x. Q)$.
-\end{warn}
-
-
-\subsection{The let and case constructions}
-Local abbreviations can be introduced by a \texttt{let} construct whose
-syntax appears in Fig.\ts\ref{hol-grammar}.  Internally it is translated into
-the constant~\cdx{Let}.  It can be expanded by rewriting with its
-definition, \tdx{Let_def}.
-
-HOL also defines the basic syntax
-\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] 
-as a uniform means of expressing \texttt{case} constructs.  Therefore \texttt{case}
-and \sdx{of} are reserved words.  Initially, this is mere syntax and has no
-logical meaning.  By declaring translations, you can cause instances of the
-\texttt{case} construct to denote applications of particular case operators.
-This is what happens automatically for each \texttt{datatype} definition
-(see~{\S}\ref{sec:HOL:datatype}).
-
-\begin{warn}
-Both \texttt{if} and \texttt{case} constructs have as low a priority as
-quantifiers, which requires additional enclosing parentheses in the context
-of most other operations.  For example, instead of $f~x = {\tt if\dots
-then\dots else}\dots$ you need to write $f~x = ({\tt if\dots then\dots
-else\dots})$.
-\end{warn}
-
-\section{Rules of inference}
-
-\begin{figure}
-\begin{ttbox}\makeatother
-\tdx{refl}          t = (t::'a)
-\tdx{subst}         [| s = t; P s |] ==> P (t::'a)
-\tdx{ext}           (!!x::'a. (f x :: 'b) = g x) ==> (\%x. f x) = (\%x. g x)
-\tdx{impI}          (P ==> Q) ==> P-->Q
-\tdx{mp}            [| P-->Q;  P |] ==> Q
-\tdx{iff}           (P-->Q) --> (Q-->P) --> (P=Q)
-\tdx{someI}         P(x::'a) ==> P(@x. P x)
-\tdx{True_or_False} (P=True) | (P=False)
-\end{ttbox}
-\caption{The \texttt{HOL} rules} \label{hol-rules}
-\end{figure}
-
-Figure~\ref{hol-rules} shows the primitive inference rules of~HOL, with
-their~{\ML} names.  Some of the rules deserve additional comments:
-\begin{ttdescription}
-\item[\tdx{ext}] expresses extensionality of functions.
-\item[\tdx{iff}] asserts that logically equivalent formulae are
-  equal.
-\item[\tdx{someI}] gives the defining property of the Hilbert
-  $\varepsilon$-operator.  It is a form of the Axiom of Choice.  The derived rule
-  \tdx{some_equality} (see below) is often easier to use.
-\item[\tdx{True_or_False}] makes the logic classical.\footnote{In
-    fact, the $\varepsilon$-operator already makes the logic classical, as
-    shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.}
-\end{ttdescription}
-
-
-\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message
-\begin{ttbox}\makeatother
-\tdx{True_def}   True     == ((\%x::bool. x)=(\%x. x))
-\tdx{All_def}    All      == (\%P. P = (\%x. True))
-\tdx{Ex_def}     Ex       == (\%P. P(@x. P x))
-\tdx{False_def}  False    == (!P. P)
-\tdx{not_def}    not      == (\%P. P-->False)
-\tdx{and_def}    op &     == (\%P Q. !R. (P-->Q-->R) --> R)
-\tdx{or_def}     op |     == (\%P Q. !R. (P-->R) --> (Q-->R) --> R)
-\tdx{Ex1_def}    Ex1      == (\%P. ? x. P x & (! y. P y --> y=x))
-
-\tdx{o_def}      op o     == (\%(f::'b=>'c) g x::'a. f(g x))
-\tdx{if_def}     If P x y ==
-              (\%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y))
-\tdx{Let_def}    Let s f  == f s
-\tdx{Least_def}  Least P  == @x. P(x) & (ALL y. P(y) --> x <= y)"
-\end{ttbox}
-\caption{The \texttt{HOL} definitions} \label{hol-defs}
-\end{figure}
-
-
-HOL follows standard practice in higher-order logic: only a few connectives
-are taken as primitive, with the remainder defined obscurely
-(Fig.\ts\ref{hol-defs}).  Gordon's {\sc hol} system expresses the
-corresponding definitions \cite[page~270]{mgordon-hol} using
-object-equality~({\tt=}), which is possible because equality in higher-order
-logic may equate formulae and even functions over formulae.  But theory~HOL,
-like all other Isabelle theories, uses meta-equality~({\tt==}) for
-definitions.
-\begin{warn}
-The definitions above should never be expanded and are shown for completeness
-only.  Instead users should reason in terms of the derived rules shown below
-or, better still, using high-level tactics.
-\end{warn}
-
-Some of the rules mention type variables; for example, \texttt{refl}
-mentions the type variable~{\tt'a}.  This allows you to instantiate
-type variables explicitly by calling \texttt{res_inst_tac}.
-
-
-\begin{figure}
-\begin{ttbox}
-\tdx{sym}         s=t ==> t=s
-\tdx{trans}       [| r=s; s=t |] ==> r=t
-\tdx{ssubst}      [| t=s; P s |] ==> P t
-\tdx{box_equals}  [| a=b;  a=c;  b=d |] ==> c=d  
-\tdx{arg_cong}    x = y ==> f x = f y
-\tdx{fun_cong}    f = g ==> f x = g x
-\tdx{cong}        [| f = g; x = y |] ==> f x = g y
-\tdx{not_sym}     t ~= s ==> s ~= t
-\subcaption{Equality}
-
-\tdx{TrueI}       True 
-\tdx{FalseE}      False ==> P
-
-\tdx{conjI}       [| P; Q |] ==> P&Q
-\tdx{conjunct1}   [| P&Q |] ==> P
-\tdx{conjunct2}   [| P&Q |] ==> Q 
-\tdx{conjE}       [| P&Q;  [| P; Q |] ==> R |] ==> R
-
-\tdx{disjI1}      P ==> P|Q
-\tdx{disjI2}      Q ==> P|Q
-\tdx{disjE}       [| P | Q; P ==> R; Q ==> R |] ==> R
-
-\tdx{notI}        (P ==> False) ==> ~ P
-\tdx{notE}        [| ~ P;  P |] ==> R
-\tdx{impE}        [| P-->Q;  P;  Q ==> R |] ==> R
-\subcaption{Propositional logic}
-
-\tdx{iffI}        [| P ==> Q;  Q ==> P |] ==> P=Q
-\tdx{iffD1}       [| P=Q; P |] ==> Q
-\tdx{iffD2}       [| P=Q; Q |] ==> P
-\tdx{iffE}        [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
-\subcaption{Logical equivalence}
-
-\end{ttbox}
-\caption{Derived rules for HOL} \label{hol-lemmas1}
-\end{figure}
-%
-%\tdx{eqTrueI}     P ==> P=True 
-%\tdx{eqTrueE}     P=True ==> P 
-
-
-\begin{figure}
-\begin{ttbox}\makeatother
-\tdx{allI}      (!!x. P x) ==> !x. P x
-\tdx{spec}      !x. P x ==> P x
-\tdx{allE}      [| !x. P x;  P x ==> R |] ==> R
-\tdx{all_dupE}  [| !x. P x;  [| P x; !x. P x |] ==> R |] ==> R
-
-\tdx{exI}       P x ==> ? x. P x
-\tdx{exE}       [| ? x. P x; !!x. P x ==> Q |] ==> Q
-
-\tdx{ex1I}      [| P a;  !!x. P x ==> x=a |] ==> ?! x. P x
-\tdx{ex1E}      [| ?! x. P x;  !!x. [| P x;  ! y. P y --> y=x |] ==> R 
-          |] ==> R
-
-\tdx{some_equality}   [| P a;  !!x. P x ==> x=a |] ==> (@x. P x) = a
-\subcaption{Quantifiers and descriptions}
-
-\tdx{ccontr}          (~P ==> False) ==> P
-\tdx{classical}       (~P ==> P) ==> P
-\tdx{excluded_middle} ~P | P
-
-\tdx{disjCI}       (~Q ==> P) ==> P|Q
-\tdx{exCI}         (! x. ~ P x ==> P a) ==> ? x. P x
-\tdx{impCE}        [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
-\tdx{iffCE}        [| P=Q;  [| P;Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R
-\tdx{notnotD}      ~~P ==> P
-\tdx{swap}         ~P ==> (~Q ==> P) ==> Q
-\subcaption{Classical logic}
-
-\tdx{if_P}         P ==> (if P then x else y) = x
-\tdx{if_not_P}     ~ P ==> (if P then x else y) = y
-\tdx{split_if}     P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))
-\subcaption{Conditionals}
-\end{ttbox}
-\caption{More derived rules} \label{hol-lemmas2}
-\end{figure}
-
-Some derived rules are shown in Figures~\ref{hol-lemmas1}
-and~\ref{hol-lemmas2}, with their {\ML} names.  These include natural rules
-for the logical connectives, as well as sequent-style elimination rules for
-conjunctions, implications, and universal quantifiers.  
-
-Note the equality rules: \tdx{ssubst} performs substitution in
-backward proofs, while \tdx{box_equals} supports reasoning by
-simplifying both sides of an equation.
-
-The following simple tactics are occasionally useful:
-\begin{ttdescription}
-\item[\ttindexbold{strip_tac} $i$] applies \texttt{allI} and \texttt{impI}
-  repeatedly to remove all outermost universal quantifiers and implications
-  from subgoal $i$.
-\item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction on
-  $P$ for subgoal $i$: the latter is replaced by two identical subgoals with
-  the added assumptions $P$ and $\lnot P$, respectively.
-\item[\ttindexbold{smp_tac} $j$ $i$] applies $j$ times \texttt{spec} and then
-  \texttt{mp} in subgoal $i$, which is typically useful when forward-chaining 
-  from an induction hypothesis. As a generalization of \texttt{mp_tac}, 
-  if there are assumptions $\forall \vec{x}. P \vec{x} \imp Q \vec{x}$ and 
-  $P \vec{a}$, ($\vec{x}$ being a vector of $j$ variables)
-  then it replaces the universally quantified implication by $Q \vec{a}$. 
-  It may instantiate unknowns. It fails if it can do nothing.
-\end{ttdescription}
-
-
-\begin{figure} 
-\begin{center}
-\begin{tabular}{rrr}
-  \it name      &\it meta-type  & \it description \\ 
-\index{{}@\verb'{}' symbol}
-  \verb|{}|     & $\alpha\,set$         & the empty set \\
-  \cdx{insert}  & $[\alpha,\alpha\,set]\To \alpha\,set$
-        & insertion of element \\
-  \cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$
-        & comprehension \\
-  \cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
-        & intersection over a set\\
-  \cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
-        & union over a set\\
-  \cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$
-        &set of sets intersection \\
-  \cdx{Union} & $(\alpha\,set)set\To\alpha\,set$
-        &set of sets union \\
-  \cdx{Pow}   & $\alpha\,set \To (\alpha\,set)set$
-        & powerset \\[1ex]
-  \cdx{range}   & $(\alpha\To\beta )\To\beta\,set$
-        & range of a function \\[1ex]
-  \cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$
-        & bounded quantifiers
-\end{tabular}
-\end{center}
-\subcaption{Constants}
-
-\begin{center}
-\begin{tabular}{llrrr} 
-  \it symbol &\it name     &\it meta-type & \it priority & \it description \\
-  \sdx{INT}  & \cdx{INTER1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
-        intersection\\
-  \sdx{UN}  & \cdx{UNION1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
-        union 
-\end{tabular}
-\end{center}
-\subcaption{Binders} 
-
-\begin{center}
-\index{*"`"` symbol}
-\index{*": symbol}
-\index{*"<"= symbol}
-\begin{tabular}{rrrr} 
-  \it symbol    & \it meta-type & \it priority & \it description \\ 
-  \tt ``        & $[\alpha\To\beta ,\alpha\,set]\To  \beta\,set$
-        & Left 90 & image \\
-  \sdx{Int}     & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
-        & Left 70 & intersection ($\int$) \\
-  \sdx{Un}      & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
-        & Left 65 & union ($\un$) \\
-  \tt:          & $[\alpha ,\alpha\,set]\To bool$       
-        & Left 50 & membership ($\in$) \\
-  \tt <=        & $[\alpha\,set,\alpha\,set]\To bool$
-        & Left 50 & subset ($\subseteq$) 
-\end{tabular}
-\end{center}
-\subcaption{Infixes}
-\caption{Syntax of the theory \texttt{Set}} \label{hol-set-syntax}
-\end{figure} 
-
-
-\begin{figure} 
-\begin{center} \tt\frenchspacing
-\index{*"! symbol}
-\begin{tabular}{rrr} 
-  \it external          & \it internal  & \it description \\ 
-  $a$ \ttilde: $b$      & \ttilde($a$ : $b$)    & \rm not in\\
-  {\ttlbrace}$a@1$, $\ldots${\ttrbrace}  &  insert $a@1$ $\ldots$ {\ttlbrace}{\ttrbrace} & \rm finite set \\
-  {\ttlbrace}$x$. $P[x]${\ttrbrace}        &  Collect($\lambda x. P[x]$) &
-        \rm comprehension \\
-  \sdx{INT} $x$:$A$. $B[x]$      & INTER $A$ $\lambda x. B[x]$ &
-        \rm intersection \\
-  \sdx{UN}{\tt\ }  $x$:$A$. $B[x]$      & UNION $A$ $\lambda x. B[x]$ &
-        \rm union \\
-  \sdx{ALL} $x$:$A$.\ $P[x]$ or \texttt{!} $x$:$A$.\ $P[x]$ &
-        Ball $A$ $\lambda x.\ P[x]$ & 
-        \rm bounded $\forall$ \\
-  \sdx{EX}{\tt\ } $x$:$A$.\ $P[x]$ or \texttt{?} $x$:$A$.\ $P[x]$ & 
-        Bex $A$ $\lambda x.\ P[x]$ & \rm bounded $\exists$
-\end{tabular}
-\end{center}
-\subcaption{Translations}
-
-\dquotes
-\[\begin{array}{rclcl}
-    term & = & \hbox{other terms\ldots} \\
-         & | & "{\ttlbrace}{\ttrbrace}" \\
-         & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\
-         & | & "{\ttlbrace} " id " . " formula " {\ttrbrace}" \\
-         & | & term " `` " term \\
-         & | & term " Int " term \\
-         & | & term " Un " term \\
-         & | & "INT~~"  id ":" term " . " term \\
-         & | & "UN~~~"  id ":" term " . " term \\
-         & | & "INT~~"  id~id^* " . " term \\
-         & | & "UN~~~"  id~id^* " . " term \\[2ex]
- formula & = & \hbox{other formulae\ldots} \\
-         & | & term " : " term \\
-         & | & term " \ttilde: " term \\
-         & | & term " <= " term \\
-         & | & "ALL " id ":" term " . " formula
-         & | & "!~" id ":" term " . " formula \\
-         & | & "EX~~" id ":" term " . " formula
-         & | & "?~" id ":" term " . " formula \\
-  \end{array}
-\]
-\subcaption{Full Grammar}
-\caption{Syntax of the theory \texttt{Set} (continued)} \label{hol-set-syntax2}
-\end{figure} 
-
-
-\section{A formulation of set theory}
-Historically, higher-order logic gives a foundation for Russell and
-Whitehead's theory of classes.  Let us use modern terminology and call them
-{\bf sets}, but note that these sets are distinct from those of ZF set theory,
-and behave more like ZF classes.
-\begin{itemize}
-\item
-Sets are given by predicates over some type~$\sigma$.  Types serve to
-define universes for sets, but type-checking is still significant.
-\item
-There is a universal set (for each type).  Thus, sets have complements, and
-may be defined by absolute comprehension.
-\item
-Although sets may contain other sets as elements, the containing set must
-have a more complex type.
-\end{itemize}
-Finite unions and intersections have the same behaviour in HOL as they do
-in~ZF.  In HOL the intersection of the empty set is well-defined, denoting the
-universal set for the given type.
-
-\subsection{Syntax of set theory}\index{*set type}
-HOL's set theory is called \thydx{Set}.  The type $\alpha\,set$ is essentially
-the same as $\alpha\To bool$.  The new type is defined for clarity and to
-avoid complications involving function types in unification.  The isomorphisms
-between the two types are declared explicitly.  They are very natural:
-\texttt{Collect} maps $\alpha\To bool$ to $\alpha\,set$, while \hbox{\tt op :}
-maps in the other direction (ignoring argument order).
-
-Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax
-translations.  Figure~\ref{hol-set-syntax2} presents the grammar of the new
-constructs.  Infix operators include union and intersection ($A\un B$
-and $A\int B$), the subset and membership relations, and the image
-operator~{\tt``}\@.  Note that $a$\verb|~:|$b$ is translated to
-$\lnot(a\in b)$.  
-
-The $\{a@1,\ldots\}$ notation abbreviates finite sets constructed in
-the obvious manner using~\texttt{insert} and~$\{\}$:
-\begin{eqnarray*}
-  \{a, b, c\} & \equiv &
-  \texttt{insert} \, a \, ({\tt insert} \, b \, ({\tt insert} \, c \, \{\}))
-\end{eqnarray*}
-
-The set \hbox{\tt{\ttlbrace}$x$.\ $P[x]${\ttrbrace}} consists of all $x$ (of
-suitable type) that satisfy~$P[x]$, where $P[x]$ is a formula that may contain
-free occurrences of~$x$.  This syntax expands to \cdx{Collect}$(\lambda x.
-P[x])$.  It defines sets by absolute comprehension, which is impossible in~ZF;
-the type of~$x$ implicitly restricts the comprehension.
-
-The set theory defines two {\bf bounded quantifiers}:
-\begin{eqnarray*}
-   \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
-   \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
-\end{eqnarray*}
-The constants~\cdx{Ball} and~\cdx{Bex} are defined
-accordingly.  Instead of \texttt{Ball $A$ $P$} and \texttt{Bex $A$ $P$} we may
-write\index{*"! symbol}\index{*"? symbol}
-\index{*ALL symbol}\index{*EX symbol} 
-%
-\hbox{\tt ALL~$x$:$A$.\ $P[x]$} and \hbox{\tt EX~$x$:$A$.\ $P[x]$}.  The
-original notation of Gordon's {\sc hol} system is supported as well:
-\texttt{!}\ and \texttt{?}.
-
-Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and
-$\bigcap@{x\in A}B[x]$, are written 
-\sdx{UN}~\hbox{\tt$x$:$A$.\ $B[x]$} and
-\sdx{INT}~\hbox{\tt$x$:$A$.\ $B[x]$}.  
-
-Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x
-B[x]$, are written \sdx{UN}~\hbox{\tt$x$.\ $B[x]$} and
-\sdx{INT}~\hbox{\tt$x$.\ $B[x]$}.  They are equivalent to the previous
-union and intersection operators when $A$ is the universal set.
-
-The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets.  They are
-not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$,
-respectively.
-
-
-
-\begin{figure} \underscoreon
-\begin{ttbox}
-\tdx{mem_Collect_eq}    (a : {\ttlbrace}x. P x{\ttrbrace}) = P a
-\tdx{Collect_mem_eq}    {\ttlbrace}x. x:A{\ttrbrace} = A
-
-\tdx{empty_def}         {\ttlbrace}{\ttrbrace}          == {\ttlbrace}x. False{\ttrbrace}
-\tdx{insert_def}        insert a B  == {\ttlbrace}x. x=a{\ttrbrace} Un B
-\tdx{Ball_def}          Ball A P    == ! x. x:A --> P x
-\tdx{Bex_def}           Bex A P     == ? x. x:A & P x
-\tdx{subset_def}        A <= B      == ! x:A. x:B
-\tdx{Un_def}            A Un B      == {\ttlbrace}x. x:A | x:B{\ttrbrace}
-\tdx{Int_def}           A Int B     == {\ttlbrace}x. x:A & x:B{\ttrbrace}
-\tdx{set_diff_def}      A - B       == {\ttlbrace}x. x:A & x~:B{\ttrbrace}
-\tdx{Compl_def}         -A          == {\ttlbrace}x. ~ x:A{\ttrbrace}
-\tdx{INTER_def}         INTER A B   == {\ttlbrace}y. ! x:A. y: B x{\ttrbrace}
-\tdx{UNION_def}         UNION A B   == {\ttlbrace}y. ? x:A. y: B x{\ttrbrace}
-\tdx{INTER1_def}        INTER1 B    == INTER {\ttlbrace}x. True{\ttrbrace} B 
-\tdx{UNION1_def}        UNION1 B    == UNION {\ttlbrace}x. True{\ttrbrace} B 
-\tdx{Inter_def}         Inter S     == (INT x:S. x)
-\tdx{Union_def}         Union S     == (UN  x:S. x)
-\tdx{Pow_def}           Pow A       == {\ttlbrace}B. B <= A{\ttrbrace}
-\tdx{image_def}         f``A        == {\ttlbrace}y. ? x:A. y=f x{\ttrbrace}
-\tdx{range_def}         range f     == {\ttlbrace}y. ? x. y=f x{\ttrbrace}
-\end{ttbox}
-\caption{Rules of the theory \texttt{Set}} \label{hol-set-rules}
-\end{figure}
-
-
-\begin{figure} \underscoreon
-\begin{ttbox}
-\tdx{CollectI}        [| P a |] ==> a : {\ttlbrace}x. P x{\ttrbrace}
-\tdx{CollectD}        [| a : {\ttlbrace}x. P x{\ttrbrace} |] ==> P a
-\tdx{CollectE}        [| a : {\ttlbrace}x. P x{\ttrbrace};  P a ==> W |] ==> W
-
-\tdx{ballI}           [| !!x. x:A ==> P x |] ==> ! x:A. P x
-\tdx{bspec}           [| ! x:A. P x;  x:A |] ==> P x
-\tdx{ballE}           [| ! x:A. P x;  P x ==> Q;  ~ x:A ==> Q |] ==> Q
-
-\tdx{bexI}            [| P x;  x:A |] ==> ? x:A. P x
-\tdx{bexCI}           [| ! x:A. ~ P x ==> P a;  a:A |] ==> ? x:A. P x
-\tdx{bexE}            [| ? x:A. P x;  !!x. [| x:A; P x |] ==> Q  |] ==> Q
-\subcaption{Comprehension and Bounded quantifiers}
-
-\tdx{subsetI}         (!!x. x:A ==> x:B) ==> A <= B
-\tdx{subsetD}         [| A <= B;  c:A |] ==> c:B
-\tdx{subsetCE}        [| A <= B;  ~ (c:A) ==> P;  c:B ==> P |] ==> P
-
-\tdx{subset_refl}     A <= A
-\tdx{subset_trans}    [| A<=B;  B<=C |] ==> A<=C
-
-\tdx{equalityI}       [| A <= B;  B <= A |] ==> A = B
-\tdx{equalityD1}      A = B ==> A<=B
-\tdx{equalityD2}      A = B ==> B<=A
-\tdx{equalityE}       [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
-
-\tdx{equalityCE}      [| A = B;  [| c:A; c:B |] ==> P;  
-                           [| ~ c:A; ~ c:B |] ==> P 
-                |]  ==>  P
-\subcaption{The subset and equality relations}
-\end{ttbox}
-\caption{Derived rules for set theory} \label{hol-set1}
-\end{figure}
-
-
-\begin{figure} \underscoreon
-\begin{ttbox}
-\tdx{emptyE}   a : {\ttlbrace}{\ttrbrace} ==> P
-
-\tdx{insertI1} a : insert a B
-\tdx{insertI2} a : B ==> a : insert b B
-\tdx{insertE}  [| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P
-
-\tdx{ComplI}   [| c:A ==> False |] ==> c : -A
-\tdx{ComplD}   [| c : -A |] ==> ~ c:A
-
-\tdx{UnI1}     c:A ==> c : A Un B
-\tdx{UnI2}     c:B ==> c : A Un B
-\tdx{UnCI}     (~c:B ==> c:A) ==> c : A Un B
-\tdx{UnE}      [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
-
-\tdx{IntI}     [| c:A;  c:B |] ==> c : A Int B
-\tdx{IntD1}    c : A Int B ==> c:A
-\tdx{IntD2}    c : A Int B ==> c:B
-\tdx{IntE}     [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
-
-\tdx{UN_I}     [| a:A;  b: B a |] ==> b: (UN x:A. B x)
-\tdx{UN_E}     [| b: (UN x:A. B x);  !!x.[| x:A;  b:B x |] ==> R |] ==> R
-
-\tdx{INT_I}    (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
-\tdx{INT_D}    [| b: (INT x:A. B x);  a:A |] ==> b: B a
-\tdx{INT_E}    [| b: (INT x:A. B x);  b: B a ==> R;  ~ a:A ==> R |] ==> R
-
-\tdx{UnionI}   [| X:C;  A:X |] ==> A : Union C
-\tdx{UnionE}   [| A : Union C;  !!X.[| A:X;  X:C |] ==> R |] ==> R
-
-\tdx{InterI}   [| !!X. X:C ==> A:X |] ==> A : Inter C
-\tdx{InterD}   [| A : Inter C;  X:C |] ==> A:X
-\tdx{InterE}   [| A : Inter C;  A:X ==> R;  ~ X:C ==> R |] ==> R
-
-\tdx{PowI}     A<=B ==> A: Pow B
-\tdx{PowD}     A: Pow B ==> A<=B
-
-\tdx{imageI}   [| x:A |] ==> f x : f``A
-\tdx{imageE}   [| b : f``A;  !!x.[| b=f x;  x:A |] ==> P |] ==> P
-
-\tdx{rangeI}   f x : range f
-\tdx{rangeE}   [| b : range f;  !!x.[| b=f x |] ==> P |] ==> P
-\end{ttbox}
-\caption{Further derived rules for set theory} \label{hol-set2}
-\end{figure}
-
-
-\subsection{Axioms and rules of set theory}
-Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}.  The
-axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert
-that the functions \texttt{Collect} and \hbox{\tt op :} are isomorphisms.  Of
-course, \hbox{\tt op :} also serves as the membership relation.
-
-All the other axioms are definitions.  They include the empty set, bounded
-quantifiers, unions, intersections, complements and the subset relation.
-They also include straightforward constructions on functions: image~({\tt``})
-and \texttt{range}.
-
-%The predicate \cdx{inj_on} is used for simulating type definitions.
-%The statement ${\tt inj_on}~f~A$ asserts that $f$ is injective on the
-%set~$A$, which specifies a subset of its domain type.  In a type
-%definition, $f$ is the abstraction function and $A$ is the set of valid
-%representations; we should not expect $f$ to be injective outside of~$A$.
-
-%\begin{figure} \underscoreon
-%\begin{ttbox}
-%\tdx{Inv_f_f}    inj f ==> Inv f (f x) = x
-%\tdx{f_Inv_f}    y : range f ==> f(Inv f y) = y
-%
-%\tdx{Inv_injective}
-%    [| Inv f x=Inv f y; x: range f;  y: range f |] ==> x=y
-%
-%
-%\tdx{monoI}      [| !!A B. A <= B ==> f A <= f B |] ==> mono f
-%\tdx{monoD}      [| mono f;  A <= B |] ==> f A <= f B
-%
-%\tdx{injI}       [| !! x y. f x = f y ==> x=y |] ==> inj f
-%\tdx{inj_inverseI}              (!!x. g(f x) = x) ==> inj f
-%\tdx{injD}       [| inj f; f x = f y |] ==> x=y
-%
-%\tdx{inj_onI}  (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_on f A
-%\tdx{inj_onD}  [| inj_on f A;  f x=f y;  x:A;  y:A |] ==> x=y
-%
-%\tdx{inj_on_inverseI}
-%    (!!x. x:A ==> g(f x) = x) ==> inj_on f A
-%\tdx{inj_on_contraD}
-%    [| inj_on f A;  x~=y;  x:A;  y:A |] ==> ~ f x=f y
-%\end{ttbox}
-%\caption{Derived rules involving functions} \label{hol-fun}
-%\end{figure}
-
-
-\begin{figure} \underscoreon
-\begin{ttbox}
-\tdx{Union_upper}     B:A ==> B <= Union A
-\tdx{Union_least}     [| !!X. X:A ==> X<=C |] ==> Union A <= C
-
-\tdx{Inter_lower}     B:A ==> Inter A <= B
-\tdx{Inter_greatest}  [| !!X. X:A ==> C<=X |] ==> C <= Inter A
-
-\tdx{Un_upper1}       A <= A Un B
-\tdx{Un_upper2}       B <= A Un B
-\tdx{Un_least}        [| A<=C;  B<=C |] ==> A Un B <= C
-
-\tdx{Int_lower1}      A Int B <= A
-\tdx{Int_lower2}      A Int B <= B
-\tdx{Int_greatest}    [| C<=A;  C<=B |] ==> C <= A Int B
-\end{ttbox}
-\caption{Derived rules involving subsets} \label{hol-subset}
-\end{figure}
-
-
-\begin{figure} \underscoreon   \hfuzz=4pt%suppress "Overfull \hbox" message
-\begin{ttbox}
-\tdx{Int_absorb}        A Int A = A
-\tdx{Int_commute}       A Int B = B Int A
-\tdx{Int_assoc}         (A Int B) Int C  =  A Int (B Int C)
-\tdx{Int_Un_distrib}    (A Un B)  Int C  =  (A Int C) Un (B Int C)
-
-\tdx{Un_absorb}         A Un A = A
-\tdx{Un_commute}        A Un B = B Un A
-\tdx{Un_assoc}          (A Un B)  Un C  =  A Un (B Un C)
-\tdx{Un_Int_distrib}    (A Int B) Un C  =  (A Un C) Int (B Un C)
-
-\tdx{Compl_disjoint}    A Int (-A) = {\ttlbrace}x. False{\ttrbrace}
-\tdx{Compl_partition}   A Un  (-A) = {\ttlbrace}x. True{\ttrbrace}
-\tdx{double_complement} -(-A) = A
-\tdx{Compl_Un}          -(A Un B)  = (-A) Int (-B)
-\tdx{Compl_Int}         -(A Int B) = (-A) Un (-B)
-
-\tdx{Union_Un_distrib}  Union(A Un B) = (Union A) Un (Union B)
-\tdx{Int_Union}         A Int (Union B) = (UN C:B. A Int C)
-
-\tdx{Inter_Un_distrib}  Inter(A Un B) = (Inter A) Int (Inter B)
-\tdx{Un_Inter}          A Un (Inter B) = (INT C:B. A Un C)
-
-\end{ttbox}
-\caption{Set equalities} \label{hol-equalities}
-\end{figure}
-%\tdx{Un_Union_image}    (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C)
-%\tdx{Int_Inter_image}   (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C)
-
-Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules.  Most are
-obvious and resemble rules of Isabelle's ZF set theory.  Certain rules, such
-as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI}, are designed for classical
-reasoning; the rules \tdx{subsetD}, \tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are
-not strictly necessary but yield more natural proofs.  Similarly,
-\tdx{equalityCE} supports classical reasoning about extensionality, after the
-fashion of \tdx{iffCE}.  See the file \texttt{HOL/Set.ML} for proofs
-pertaining to set theory.
-
-Figure~\ref{hol-subset} presents lattice properties of the subset relation.
-Unions form least upper bounds; non-empty intersections form greatest lower
-bounds.  Reasoning directly about subsets often yields clearer proofs than
-reasoning about the membership relation.  See the file \texttt{HOL/subset.ML}.
-
-Figure~\ref{hol-equalities} presents many common set equalities.  They
-include commutative, associative and distributive laws involving unions,
-intersections and complements.  For a complete listing see the file {\tt
-HOL/equalities.ML}.
-
-\begin{warn}
-\texttt{Blast_tac} proves many set-theoretic theorems automatically.
-Hence you seldom need to refer to the theorems above.
-\end{warn}
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{rrr}
-  \it name      &\it meta-type  & \it description \\ 
-  \cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$
-        & injective/surjective \\
-  \cdx{inj_on}        & $[\alpha\To\beta ,\alpha\,set]\To bool$
-        & injective over subset\\
-  \cdx{inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & inverse function
-\end{tabular}
-\end{center}
-
-\underscoreon
-\begin{ttbox}
-\tdx{inj_def}         inj f      == ! x y. f x=f y --> x=y
-\tdx{surj_def}        surj f     == ! y. ? x. y=f x
-\tdx{inj_on_def}      inj_on f A == !x:A. !y:A. f x=f y --> x=y
-\tdx{inv_def}         inv f      == (\%y. @x. f(x)=y)
-\end{ttbox}
-\caption{Theory \thydx{Fun}} \label{fig:HOL:Fun}
-\end{figure}
-
-\subsection{Properties of functions}\nopagebreak
-Figure~\ref{fig:HOL:Fun} presents a theory of simple properties of functions.
-Note that ${\tt inv}~f$ uses Hilbert's $\varepsilon$ to yield an inverse
-of~$f$.  See the file \texttt{HOL/Fun.ML} for a complete listing of the derived
-rules.  Reasoning about function composition (the operator~\sdx{o}) and the
-predicate~\cdx{surj} is done simply by expanding the definitions.
-
-There is also a large collection of monotonicity theorems for constructions
-on sets in the file \texttt{HOL/mono.ML}.
-
-
-\section{Simplification and substitution}
-
-Simplification tactics tactics such as \texttt{Asm_simp_tac} and \texttt{Full_simp_tac} use the default simpset
-(\texttt{simpset()}), which works for most purposes.  A quite minimal
-simplification set for higher-order logic is~\ttindexbold{HOL_ss};
-even more frugal is \ttindexbold{HOL_basic_ss}.  Equality~($=$), which
-also expresses logical equivalence, may be used for rewriting.  See
-the file \texttt{HOL/simpdata.ML} for a complete listing of the basic
-simplification rules.
-
-See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
-{Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution
-and simplification.
-
-\begin{warn}\index{simplification!of conjunctions}%
-  Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous.  The
-  left part of a conjunction helps in simplifying the right part.  This effect
-  is not available by default: it can be slow.  It can be obtained by
-  including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$.
-\end{warn}
-
-\begin{warn}\index{simplification!of \texttt{if}}\label{if-simp}%
-  By default only the condition of an \ttindex{if} is simplified but not the
-  \texttt{then} and \texttt{else} parts. Of course the latter are simplified
-  once the condition simplifies to \texttt{True} or \texttt{False}. To ensure
-  full simplification of all parts of a conditional you must remove
-  \ttindex{if_weak_cong} from the simpset, \verb$delcongs [if_weak_cong]$.
-\end{warn}
-
-If the simplifier cannot use a certain rewrite rule --- either because
-of nontermination or because its left-hand side is too flexible ---
-then you might try \texttt{stac}:
-\begin{ttdescription}
-\item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$,
-  replaces in subgoal $i$ instances of $lhs$ by corresponding instances of
-  $rhs$.  In case of multiple instances of $lhs$ in subgoal $i$, backtracking
-  may be necessary to select the desired ones.
-
-If $thm$ is a conditional equality, the instantiated condition becomes an
-additional (first) subgoal.
-\end{ttdescription}
-
-HOL provides the tactic \ttindex{hyp_subst_tac}, which substitutes for an
-equality throughout a subgoal and its hypotheses.  This tactic uses HOL's
-general substitution rule.
-
-\subsection{Case splitting}
-\label{subsec:HOL:case:splitting}
-
-HOL also provides convenient means for case splitting during rewriting. Goals
-containing a subterm of the form \texttt{if}~$b$~{\tt then\dots else\dots}
-often require a case distinction on $b$. This is expressed by the theorem
-\tdx{split_if}:
-$$
-\Var{P}(\mbox{\tt if}~\Var{b}~{\tt then}~\Var{x}~\mbox{\tt else}~\Var{y})~=~
-((\Var{b} \to \Var{P}(\Var{x})) \land (\lnot \Var{b} \to \Var{P}(\Var{y})))
-\eqno{(*)}
-$$
-For example, a simple instance of $(*)$ is
-\[
-x \in (\mbox{\tt if}~x \in A~{\tt then}~A~\mbox{\tt else}~\{x\})~=~
-((x \in A \to x \in A) \land (x \notin A \to x \in \{x\}))
-\]
-Because $(*)$ is too general as a rewrite rule for the simplifier (the
-left-hand side is not a higher-order pattern in the sense of
-\iflabelundefined{chap:simplification}{the {\em Reference Manual\/}}%
-{Chap.\ts\ref{chap:simplification}}), there is a special infix function 
-\ttindexbold{addsplits} of type \texttt{simpset * thm list -> simpset}
-(analogous to \texttt{addsimps}) that adds rules such as $(*)$ to a
-simpset, as in
-\begin{ttbox}
-by(simp_tac (simpset() addsplits [split_if]) 1);
-\end{ttbox}
-The effect is that after each round of simplification, one occurrence of
-\texttt{if} is split acording to \texttt{split_if}, until all occurences of
-\texttt{if} have been eliminated.
-
-It turns out that using \texttt{split_if} is almost always the right thing to
-do. Hence \texttt{split_if} is already included in the default simpset. If
-you want to delete it from a simpset, use \ttindexbold{delsplits}, which is
-the inverse of \texttt{addsplits}:
-\begin{ttbox}
-by(simp_tac (simpset() delsplits [split_if]) 1);
-\end{ttbox}
-
-In general, \texttt{addsplits} accepts rules of the form
-\[
-\Var{P}(c~\Var{x@1}~\dots~\Var{x@n})~=~ rhs
-\]
-where $c$ is a constant and $rhs$ is arbitrary. Note that $(*)$ is of the
-right form because internally the left-hand side is
-$\Var{P}(\mathtt{If}~\Var{b}~\Var{x}~~\Var{y})$. Important further examples
-are splitting rules for \texttt{case} expressions (see~{\S}\ref{subsec:list}
-and~{\S}\ref{subsec:datatype:basics}).
-
-Analogous to \texttt{Addsimps} and \texttt{Delsimps}, there are also
-imperative versions of \texttt{addsplits} and \texttt{delsplits}
-\begin{ttbox}
-\ttindexbold{Addsplits}: thm list -> unit
-\ttindexbold{Delsplits}: thm list -> unit
-\end{ttbox}
-for adding splitting rules to, and deleting them from the current simpset.
-
-
-\section{Types}\label{sec:HOL:Types}
-This section describes HOL's basic predefined types ($\alpha \times \beta$,
-$\alpha + \beta$, $nat$ and $\alpha \; list$) and ways for introducing new
-types in general.  The most important type construction, the
-\texttt{datatype}, is treated separately in {\S}\ref{sec:HOL:datatype}.
-
-
-\subsection{Product and sum types}\index{*"* type}\index{*"+ type}
-\label{subsec:prod-sum}
-
-\begin{figure}[htbp]
-\begin{constants}
-  \it symbol    & \it meta-type &           & \it description \\ 
-  \cdx{Pair}    & $[\alpha,\beta]\To \alpha\times\beta$
-        & & ordered pairs $(a,b)$ \\
-  \cdx{fst}     & $\alpha\times\beta \To \alpha$        & & first projection\\
-  \cdx{snd}     & $\alpha\times\beta \To \beta$         & & second projection\\
-  \cdx{split}   & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ 
-        & & generalized projection\\
-  \cdx{Sigma}  & 
-        $[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ &
-        & general sum of sets
-\end{constants}
-%\tdx{fst_def}      fst p     == @a. ? b. p = (a,b)
-%\tdx{snd_def}      snd p     == @b. ? a. p = (a,b)
-%\tdx{split_def}    split c p == c (fst p) (snd p)
-\begin{ttbox}\makeatletter
-\tdx{Sigma_def}    Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace}
-
-\tdx{Pair_eq}      ((a,b) = (a',b')) = (a=a' & b=b')
-\tdx{Pair_inject}  [| (a, b) = (a',b');  [| a=a';  b=b' |] ==> R |] ==> R
-\tdx{PairE}        [| !!x y. p = (x,y) ==> Q |] ==> Q
-
-\tdx{fst_conv}     fst (a,b) = a
-\tdx{snd_conv}     snd (a,b) = b
-\tdx{surjective_pairing}  p = (fst p,snd p)
-
-\tdx{split}        split c (a,b) = c a b
-\tdx{split_split}  R(split c p) = (! x y. p = (x,y) --> R(c x y))
-
-\tdx{SigmaI}    [| a:A;  b:B a |] ==> (a,b) : Sigma A B
-
-\tdx{SigmaE}    [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P 
-          |] ==> P
-\end{ttbox}
-\caption{Type $\alpha\times\beta$}\label{hol-prod}
-\end{figure} 
-
-Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type
-$\alpha\times\beta$, with the ordered pair syntax $(a, b)$.  General
-tuples are simulated by pairs nested to the right:
-\begin{center}
-\begin{tabular}{c|c}
-external & internal \\
-\hline
-$\tau@1 \times \dots \times \tau@n$ & $\tau@1 \times (\dots (\tau@{n-1} \times \tau@n)\dots)$ \\
-\hline
-$(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\
-\end{tabular}
-\end{center}
-In addition, it is possible to use tuples
-as patterns in abstractions:
-\begin{center}
-{\tt\%($x$,$y$). $t$} \quad stands for\quad \texttt{split(\%$x$\thinspace$y$.\ $t$)} 
-\end{center}
-Nested patterns are also supported.  They are translated stepwise:
-\begin{eqnarray*}
-\hbox{\tt\%($x$,$y$,$z$).\ $t$} 
-   & \leadsto & \hbox{\tt\%($x$,($y$,$z$)).\ $t$} \\
-   & \leadsto & \hbox{\tt split(\%$x$.\%($y$,$z$).\ $t$)}\\
-   & \leadsto & \hbox{\tt split(\%$x$.\ split(\%$y$ $z$.\ $t$))}
-\end{eqnarray*}
-The reverse translation is performed upon printing.
-\begin{warn}
-  The translation between patterns and \texttt{split} is performed automatically
-  by the parser and printer.  Thus the internal and external form of a term
-  may differ, which can affects proofs.  For example the term {\tt
-  (\%(x,y).(y,x))(a,b)} requires the theorem \texttt{split} (which is in the
-  default simpset) to rewrite to {\tt(b,a)}.
-\end{warn}
-In addition to explicit $\lambda$-abstractions, patterns can be used in any
-variable binding construct which is internally described by a
-$\lambda$-abstraction.  Some important examples are
-\begin{description}
-\item[Let:] \texttt{let {\it pattern} = $t$ in $u$}
-\item[Quantifiers:] \texttt{ALL~{\it pattern}:$A$.~$P$}
-\item[Choice:] {\underscoreon \tt SOME~{\it pattern}.~$P$}
-\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}
-\item[Sets:] \texttt{{\ttlbrace}{\it pattern}.~$P${\ttrbrace}}
-\end{description}
-
-There is a simple tactic which supports reasoning about patterns:
-\begin{ttdescription}
-\item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all
-  {\tt!!}-quantified variables of product type by individual variables for
-  each component.  A simple example:
-\begin{ttbox}
-{\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p}
-by(split_all_tac 1);
-{\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)}
-\end{ttbox}
-\end{ttdescription}
-
-Theory \texttt{Prod} also introduces the degenerate product type \texttt{unit}
-which contains only a single element named {\tt()} with the property
-\begin{ttbox}
-\tdx{unit_eq}       u = ()
-\end{ttbox}
-\bigskip
-
-Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$
-which associates to the right and has a lower priority than $*$: $\tau@1 +
-\tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$.
-
-The definition of products and sums in terms of existing types is not
-shown.  The constructions are fairly standard and can be found in the
-respective theory files. Although the sum and product types are
-constructed manually for foundational reasons, they are represented as
-actual datatypes later.
-
-\begin{figure}
-\begin{constants}
-  \it symbol    & \it meta-type &           & \it description \\ 
-  \cdx{Inl}     & $\alpha \To \alpha+\beta$    & & first injection\\
-  \cdx{Inr}     & $\beta \To \alpha+\beta$     & & second injection\\
-  \cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$
-        & & conditional
-\end{constants}
-\begin{ttbox}\makeatletter
-\tdx{Inl_not_Inr}    Inl a ~= Inr b
-
-\tdx{inj_Inl}        inj Inl
-\tdx{inj_Inr}        inj Inr
-
-\tdx{sumE}           [| !!x. P(Inl x);  !!y. P(Inr y) |] ==> P s
-
-\tdx{sum_case_Inl}   sum_case f g (Inl x) = f x
-\tdx{sum_case_Inr}   sum_case f g (Inr x) = g x
-
-\tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s
-\tdx{sum.split_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &
-                                     (! y. s = Inr(y) --> R(g(y))))
-\end{ttbox}
-\caption{Type $\alpha+\beta$}\label{hol-sum}
-\end{figure}
-
-\begin{figure}
-\index{*"< symbol}
-\index{*"* symbol}
-\index{*div symbol}
-\index{*mod symbol}
-\index{*dvd symbol}
-\index{*"+ symbol}
-\index{*"- symbol}
-\begin{constants}
-  \it symbol    & \it meta-type & \it priority & \it description \\ 
-  \cdx{0}       & $\alpha$  & & zero \\
-  \cdx{Suc}     & $nat \To nat$ & & successor function\\
-  \tt *    & $[\alpha,\alpha]\To \alpha$    &  Left 70 & multiplication \\
-  \tt div  & $[\alpha,\alpha]\To \alpha$    &  Left 70 & division\\
-  \tt mod  & $[\alpha,\alpha]\To \alpha$    &  Left 70 & modulus\\
-  \tt dvd  & $[\alpha,\alpha]\To bool$     &  Left 70 & ``divides'' relation\\
-  \tt +    & $[\alpha,\alpha]\To \alpha$    &  Left 65 & addition\\
-  \tt -    & $[\alpha,\alpha]\To \alpha$    &  Left 65 & subtraction
-\end{constants}
-\subcaption{Constants and infixes}
-
-\begin{ttbox}\makeatother
-\tdx{nat_induct}     [| P 0; !!n. P n ==> P(Suc n) |]  ==> P n
-
-\tdx{Suc_not_Zero}   Suc m ~= 0
-\tdx{inj_Suc}        inj Suc
-\tdx{n_not_Suc_n}    n~=Suc n
-\subcaption{Basic properties}
-\end{ttbox}
-\caption{The type of natural numbers, \tydx{nat}} \label{hol-nat1}
-\end{figure}
-
-
-\begin{figure}
-\begin{ttbox}\makeatother
-              0+n           = n
-              (Suc m)+n     = Suc(m+n)
-
-              m-0           = m
-              0-n           = n
-              Suc(m)-Suc(n) = m-n
-
-              0*n           = 0
-              Suc(m)*n      = n + m*n
-
-\tdx{mod_less}      m<n ==> m mod n = m
-\tdx{mod_geq}       [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n
-
-\tdx{div_less}      m<n ==> m div n = 0
-\tdx{div_geq}       [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)
-\end{ttbox}
-\caption{Recursion equations for the arithmetic operators} \label{hol-nat2}
-\end{figure}
-
-\subsection{The type of natural numbers, \textit{nat}}
-\index{nat@{\textit{nat}} type|(}
-
-The theory \thydx{Nat} defines the natural numbers in a roundabout but
-traditional way.  The axiom of infinity postulates a type~\tydx{ind} of
-individuals, which is non-empty and closed under an injective operation.  The
-natural numbers are inductively generated by choosing an arbitrary individual
-for~0 and using the injective operation to take successors.  This is a least
-fixedpoint construction.  
-
-Type~\tydx{nat} is an instance of class~\cldx{ord}, which makes the overloaded
-functions of this class (especially \cdx{<} and \cdx{<=}, but also \cdx{min},
-\cdx{max} and \cdx{LEAST}) available on \tydx{nat}.  Theory \thydx{Nat} 
-also shows that {\tt<=} is a linear order, so \tydx{nat} is
-also an instance of class \cldx{linorder}.
-
-Theory \thydx{NatArith} develops arithmetic on the natural numbers.  It defines
-addition, multiplication and subtraction.  Theory \thydx{Divides} defines
-division, remainder and the ``divides'' relation.  The numerous theorems
-proved include commutative, associative, distributive, identity and
-cancellation laws.  See Figs.\ts\ref{hol-nat1} and~\ref{hol-nat2}.  The
-recursion equations for the operators \texttt{+}, \texttt{-} and \texttt{*} on
-\texttt{nat} are part of the default simpset.
-
-Functions on \tydx{nat} can be defined by primitive or well-founded recursion;
-see {\S}\ref{sec:HOL:recursive}.  A simple example is addition.
-Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following
-the standard convention.
-\begin{ttbox}
-\sdx{primrec}
-      "0 + n = n"
-  "Suc m + n = Suc (m + n)"
-\end{ttbox}
-There is also a \sdx{case}-construct
-of the form
-\begin{ttbox}
-case \(e\) of 0 => \(a\) | Suc \(m\) => \(b\)
-\end{ttbox}
-Note that Isabelle insists on precisely this format; you may not even change
-the order of the two cases.
-Both \texttt{primrec} and \texttt{case} are realized by a recursion operator
-\cdx{nat_rec}, which is available because \textit{nat} is represented as
-a datatype.
-
-%The predecessor relation, \cdx{pred_nat}, is shown to be well-founded.
-%Recursion along this relation resembles primitive recursion, but is
-%stronger because we are in higher-order logic; using primitive recursion to
-%define a higher-order function, we can easily Ackermann's function, which
-%is not primitive recursive \cite[page~104]{thompson91}.
-%The transitive closure of \cdx{pred_nat} is~$<$.  Many functions on the
-%natural numbers are most easily expressed using recursion along~$<$.
-
-Tactic {\tt\ttindex{induct_tac} "$n$" $i$} performs induction on variable~$n$
-in subgoal~$i$ using theorem \texttt{nat_induct}.  There is also the derived
-theorem \tdx{less_induct}:
-\begin{ttbox}
-[| !!n. [| ! m. m<n --> P m |] ==> P n |]  ==>  P n
-\end{ttbox}
-
-
-\subsection{Numerical types and numerical reasoning}
-
-The integers (type \tdx{int}) are also available in HOL, and the reals (type
-\tdx{real}) are available in the logic image \texttt{HOL-Complex}.  They support
-the expected operations of addition (\texttt{+}), subtraction (\texttt{-}) and
-multiplication (\texttt{*}), and much else.  Type \tdx{int} provides the
-\texttt{div} and \texttt{mod} operators, while type \tdx{real} provides real
-division and other operations.  Both types belong to class \cldx{linorder}, so
-they inherit the relational operators and all the usual properties of linear
-orderings.  For full details, please survey the theories in subdirectories
-\texttt{Integ}, \texttt{Real}, and \texttt{Complex}.
-
-All three numeric types admit numerals of the form \texttt{$sd\ldots d$},
-where $s$ is an optional minus sign and $d\ldots d$ is a string of digits.
-Numerals are represented internally by a datatype for binary notation, which
-allows numerical calculations to be performed by rewriting.  For example, the
-integer division of \texttt{54342339} by \texttt{3452} takes about five
-seconds.  By default, the simplifier cancels like terms on the opposite sites
-of relational operators (reducing \texttt{z+x<x+y} to \texttt{z<y}, for
-instance.  The simplifier also collects like terms, replacing \texttt{x+y+x*3}
-by \texttt{4*x+y}.
-
-Sometimes numerals are not wanted, because for example \texttt{n+3} does not
-match a pattern of the form \texttt{Suc $k$}.  You can re-arrange the form of
-an arithmetic expression by proving (via \texttt{subgoal_tac}) a lemma such as
-\texttt{n+3 = Suc (Suc (Suc n))}.  As an alternative, you can disable the
-fancier simplifications by using a basic simpset such as \texttt{HOL_ss}
-rather than the default one, \texttt{simpset()}.
-
-Reasoning about arithmetic inequalities can be tedious.  Fortunately, HOL
-provides a decision procedure for \emph{linear arithmetic}: formulae involving
-addition and subtraction. The simplifier invokes a weak version of this
-decision procedure automatically. If this is not sufficent, you can invoke the
-full procedure \ttindex{Lin_Arith.tac} explicitly.  It copes with arbitrary
-formulae involving {\tt=}, {\tt<}, {\tt<=}, {\tt+}, {\tt-}, {\tt Suc}, {\tt
-  min}, {\tt max} and numerical constants. Other subterms are treated as
-atomic, while subformulae not involving numerical types are ignored. Quantified
-subformulae are ignored unless they are positive universal or negative
-existential. The running time is exponential in the number of
-occurrences of {\tt min}, {\tt max}, and {\tt-} because they require case
-distinctions.
-If {\tt k} is a numeral, then {\tt div k}, {\tt mod k} and
-{\tt k dvd} are also supported. The former two are eliminated
-by case distinctions, again blowing up the running time.
-If the formula involves explicit quantifiers, \texttt{Lin_Arith.tac} may take
-super-exponential time and space.
-
-If \texttt{Lin_Arith.tac} fails, try to find relevant arithmetic results in
-the library.  The theories \texttt{Nat} and \texttt{NatArith} contain
-theorems about {\tt<}, {\tt<=}, \texttt{+}, \texttt{-} and \texttt{*}.
-Theory \texttt{Divides} contains theorems about \texttt{div} and
-\texttt{mod}.  Use Proof General's \emph{find} button (or other search
-facilities) to locate them.
-
-\index{nat@{\textit{nat}} type|)}
-
-
-\begin{figure}
-\index{#@{\tt[]} symbol}
-\index{#@{\tt\#} symbol}
-\index{"@@{\tt\at} symbol}
-\index{*"! symbol}
-\begin{constants}
-  \it symbol & \it meta-type & \it priority & \it description \\
-  \tt[]    & $\alpha\,list$ & & empty list\\
-  \tt \#   & $[\alpha,\alpha\,list]\To \alpha\,list$ & Right 65 & 
-        list constructor \\
-  \cdx{null}    & $\alpha\,list \To bool$ & & emptiness test\\
-  \cdx{hd}      & $\alpha\,list \To \alpha$ & & head \\
-  \cdx{tl}      & $\alpha\,list \To \alpha\,list$ & & tail \\
-  \cdx{last}    & $\alpha\,list \To \alpha$ & & last element \\
-  \cdx{butlast} & $\alpha\,list \To \alpha\,list$ & & drop last element \\
-  \tt\at  & $[\alpha\,list,\alpha\,list]\To \alpha\,list$ & Left 65 & append \\
-  \cdx{map}     & $(\alpha\To\beta) \To (\alpha\,list \To \beta\,list)$
-        & & apply to all\\
-  \cdx{filter}  & $(\alpha \To bool) \To (\alpha\,list \To \alpha\,list)$
-        & & filter functional\\
-  \cdx{set}& $\alpha\,list \To \alpha\,set$ & & elements\\
-  \sdx{mem}  & $\alpha \To \alpha\,list \To bool$  &  Left 55   & membership\\
-  \cdx{foldl}   & $(\beta\To\alpha\To\beta) \To \beta \To \alpha\,list \To \beta$ &
-  & iteration \\
-  \cdx{concat}   & $(\alpha\,list)list\To \alpha\,list$ & & concatenation \\
-  \cdx{rev}     & $\alpha\,list \To \alpha\,list$ & & reverse \\
-  \cdx{length}  & $\alpha\,list \To nat$ & & length \\
-  \tt! & $\alpha\,list \To nat \To \alpha$ & Left 100 & indexing \\
-  \cdx{take}, \cdx{drop} & $nat \To \alpha\,list \To \alpha\,list$ &&
-    take/drop a prefix \\
-  \cdx{takeWhile},\\
-  \cdx{dropWhile} &
-    $(\alpha \To bool) \To \alpha\,list \To \alpha\,list$ &&
-    take/drop a prefix
-\end{constants}
-\subcaption{Constants and infixes}
-
-\begin{center} \tt\frenchspacing
-\begin{tabular}{rrr} 
-  \it external        & \it internal  & \it description \\{}
-  [$x@1$, $\dots$, $x@n$]  &  $x@1$ \# $\cdots$ \# $x@n$ \# [] &
-        \rm finite list \\{}
-  [$x$:$l$. $P$]  & filter ($\lambda x{.}P$) $l$ & 
-        \rm list comprehension
-\end{tabular}
-\end{center}
-\subcaption{Translations}
-\caption{The theory \thydx{List}} \label{hol-list}
-\end{figure}
-
-
-\begin{figure}
-\begin{ttbox}\makeatother
-null [] = True
-null (x#xs) = False
-
-hd (x#xs) = x
-
-tl (x#xs) = xs
-tl [] = []
-
-[] @ ys = ys
-(x#xs) @ ys = x # xs @ ys
-
-set [] = \ttlbrace\ttrbrace
-set (x#xs) = insert x (set xs)
-
-x mem [] = False
-x mem (y#ys) = (if y=x then True else x mem ys)
-
-concat([]) = []
-concat(x#xs) = x @ concat(xs)
-
-rev([]) = []
-rev(x#xs) = rev(xs) @ [x]
-
-length([]) = 0
-length(x#xs) = Suc(length(xs))
-
-xs!0 = hd xs
-xs!(Suc n) = (tl xs)!n
-\end{ttbox}
-\caption{Simple list processing functions}
-\label{fig:HOL:list-simps}
-\end{figure}
-
-\begin{figure}
-\begin{ttbox}\makeatother
-map f [] = []
-map f (x#xs) = f x # map f xs
-
-filter P [] = []
-filter P (x#xs) = (if P x then x#filter P xs else filter P xs)
-
-foldl f a [] = a
-foldl f a (x#xs) = foldl f (f a x) xs
-
-take n [] = []
-take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)
-
-drop n [] = []
-drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)
-
-takeWhile P [] = []
-takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])
-
-dropWhile P [] = []
-dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)
-\end{ttbox}
-\caption{Further list processing functions}
-\label{fig:HOL:list-simps2}
-\end{figure}
-
-
-\subsection{The type constructor for lists, \textit{list}}
-\label{subsec:list}
-\index{list@{\textit{list}} type|(}
-
-Figure~\ref{hol-list} presents the theory \thydx{List}: the basic list
-operations with their types and syntax.  Type $\alpha \; list$ is
-defined as a \texttt{datatype} with the constructors {\tt[]} and {\tt\#}.
-As a result the generic structural induction and case analysis tactics
-\texttt{induct\_tac} and \texttt{cases\_tac} also become available for
-lists.  A \sdx{case} construct of the form
-\begin{center}\tt
-case $e$ of [] => $a$  |  \(x\)\#\(xs\) => b
-\end{center}
-is defined by translation.  For details see~{\S}\ref{sec:HOL:datatype}. There
-is also a case splitting rule \tdx{split_list_case}
-\[
-\begin{array}{l}
-P(\mathtt{case}~e~\mathtt{of}~\texttt{[] =>}~a ~\texttt{|}~
-               x\texttt{\#}xs~\texttt{=>}~f~x~xs) ~= \\
-((e = \texttt{[]} \to P(a)) \land
- (\forall x~ xs. e = x\texttt{\#}xs \to P(f~x~xs)))
-\end{array}
-\]
-which can be fed to \ttindex{addsplits} just like
-\texttt{split_if} (see~{\S}\ref{subsec:HOL:case:splitting}).
-
-\texttt{List} provides a basic library of list processing functions defined by
-primitive recursion.  The recursion equations
-are shown in Figs.\ts\ref{fig:HOL:list-simps} and~\ref{fig:HOL:list-simps2}.
-
-\index{list@{\textit{list}} type|)}
-
-
-\section{Datatype definitions}
-\label{sec:HOL:datatype}
-\index{*datatype|(}
-
-Inductive datatypes, similar to those of \ML, frequently appear in
-applications of Isabelle/HOL.  In principle, such types could be defined by
-hand via \texttt{typedef}, but this would be far too
-tedious.  The \ttindex{datatype} definition package of Isabelle/HOL (cf.\ 
-\cite{Berghofer-Wenzel:1999:TPHOL}) automates such chores.  It generates an
-appropriate \texttt{typedef} based on a least fixed-point construction, and
-proves freeness theorems and induction rules, as well as theorems for
-recursion and case combinators.  The user just has to give a simple
-specification of new inductive types using a notation similar to {\ML} or
-Haskell.
-
-The current datatype package can handle both mutual and indirect recursion.
-It also offers to represent existing types as datatypes giving the advantage
-of a more uniform view on standard theories.
-
-
-\subsection{Basics}
-\label{subsec:datatype:basics}
-
-A general \texttt{datatype} definition is of the following form:
-\[
-\begin{array}{llcl}
-\mathtt{datatype} & (\vec{\alpha})t@1 & = &
-  C^1@1~\tau^1@{1,1}~\ldots~\tau^1@{1,m^1@1} ~\mid~ \ldots ~\mid~
-    C^1@{k@1}~\tau^1@{k@1,1}~\ldots~\tau^1@{k@1,m^1@{k@1}} \\
- & & \vdots \\
-\mathtt{and} & (\vec{\alpha})t@n & = &
-  C^n@1~\tau^n@{1,1}~\ldots~\tau^n@{1,m^n@1} ~\mid~ \ldots ~\mid~
-    C^n@{k@n}~\tau^n@{k@n,1}~\ldots~\tau^n@{k@n,m^n@{k@n}}
-\end{array}
-\]
-where $\vec{\alpha} = (\alpha@1,\ldots,\alpha@h)$ is a list of type variables,
-$C^j@i$ are distinct constructor names and $\tau^j@{i,i'}$ are {\em
-  admissible} types containing at most the type variables $\alpha@1, \ldots,
-\alpha@h$. A type $\tau$ occurring in a \texttt{datatype} definition is {\em
-  admissible} if and only if
-\begin{itemize}
-\item $\tau$ is non-recursive, i.e.\ $\tau$ does not contain any of the
-newly defined type constructors $t@1,\ldots,t@n$, or
-\item $\tau = (\vec{\alpha})t@{j'}$ where $1 \leq j' \leq n$, or
-\item $\tau = (\tau'@1,\ldots,\tau'@{h'})t'$, where $t'$ is
-the type constructor of an already existing datatype and $\tau'@1,\ldots,\tau'@{h'}$
-are admissible types.
-\item $\tau = \sigma \to \tau'$, where $\tau'$ is an admissible
-type and $\sigma$ is non-recursive (i.e. the occurrences of the newly defined
-types are {\em strictly positive})
-\end{itemize}
-If some $(\vec{\alpha})t@{j'}$ occurs in a type $\tau^j@{i,i'}$
-of the form
-\[
-(\ldots,\ldots ~ (\vec{\alpha})t@{j'} ~ \ldots,\ldots)t'
-\]
-this is called a {\em nested} (or \emph{indirect}) occurrence. A very simple
-example of a datatype is the type \texttt{list}, which can be defined by
-\begin{ttbox}
-datatype 'a list = Nil
-                 | Cons 'a ('a list)
-\end{ttbox}
-Arithmetic expressions \texttt{aexp} and boolean expressions \texttt{bexp} can be modelled
-by the mutually recursive datatype definition
-\begin{ttbox}
-datatype 'a aexp = If_then_else ('a bexp) ('a aexp) ('a aexp)
-                 | Sum ('a aexp) ('a aexp)
-                 | Diff ('a aexp) ('a aexp)
-                 | Var 'a
-                 | Num nat
-and      'a bexp = Less ('a aexp) ('a aexp)
-                 | And ('a bexp) ('a bexp)
-                 | Or ('a bexp) ('a bexp)
-\end{ttbox}
-The datatype \texttt{term}, which is defined by
-\begin{ttbox}
-datatype ('a, 'b) term = Var 'a
-                       | App 'b ((('a, 'b) term) list)
-\end{ttbox}
-is an example for a datatype with nested recursion. Using nested recursion
-involving function spaces, we may also define infinitely branching datatypes, e.g.
-\begin{ttbox}
-datatype 'a tree = Atom 'a | Branch "nat => 'a tree"
-\end{ttbox}
-
-\medskip
-
-Types in HOL must be non-empty. Each of the new datatypes
-$(\vec{\alpha})t@j$ with $1 \leq j \leq n$ is non-empty if and only if it has a
-constructor $C^j@i$ with the following property: for all argument types
-$\tau^j@{i,i'}$ of the form $(\vec{\alpha})t@{j'}$ the datatype
-$(\vec{\alpha})t@{j'}$ is non-empty.
-
-If there are no nested occurrences of the newly defined datatypes, obviously
-at least one of the newly defined datatypes $(\vec{\alpha})t@j$
-must have a constructor $C^j@i$ without recursive arguments, a \emph{base
-  case}, to ensure that the new types are non-empty. If there are nested
-occurrences, a datatype can even be non-empty without having a base case
-itself. Since \texttt{list} is a non-empty datatype, \texttt{datatype t = C (t
-  list)} is non-empty as well.
-
-
-\subsubsection{Freeness of the constructors}
-
-The datatype constructors are automatically defined as functions of their
-respective type:
-\[ C^j@i :: [\tau^j@{i,1},\dots,\tau^j@{i,m^j@i}] \To (\alpha@1,\dots,\alpha@h)t@j \]
-These functions have certain {\em freeness} properties.  They construct
-distinct values:
-\[
-C^j@i~x@1~\dots~x@{m^j@i} \neq C^j@{i'}~y@1~\dots~y@{m^j@{i'}} \qquad
-\mbox{for all}~ i \neq i'.
-\]
-The constructor functions are injective:
-\[
-(C^j@i~x@1~\dots~x@{m^j@i} = C^j@i~y@1~\dots~y@{m^j@i}) =
-(x@1 = y@1 \land \dots \land x@{m^j@i} = y@{m^j@i})
-\]
-Since the number of distinctness inequalities is quadratic in the number of
-constructors, the datatype package avoids proving them separately if there are
-too many constructors. Instead, specific inequalities are proved by a suitable
-simplification procedure on demand.\footnote{This procedure, which is already part
-of the default simpset, may be referred to by the ML identifier
-\texttt{DatatypePackage.distinct_simproc}.}
-
-\subsubsection{Structural induction}
-
-The datatype package also provides structural induction rules.  For
-datatypes without nested recursion, this is of the following form:
-\[
-\infer{P@1~x@1 \land \dots \land P@n~x@n}
-  {\begin{array}{lcl}
-     \Forall x@1 \dots x@{m^1@1}.
-       \List{P@{s^1@{1,1}}~x@{r^1@{1,1}}; \dots;
-         P@{s^1@{1,l^1@1}}~x@{r^1@{1,l^1@1}}} & \Imp &
-           P@1~\left(C^1@1~x@1~\dots~x@{m^1@1}\right) \\
-     & \vdots \\
-     \Forall x@1 \dots x@{m^1@{k@1}}.
-       \List{P@{s^1@{k@1,1}}~x@{r^1@{k@1,1}}; \dots;
-         P@{s^1@{k@1,l^1@{k@1}}}~x@{r^1@{k@1,l^1@{k@1}}}} & \Imp &
-           P@1~\left(C^1@{k@1}~x@1~\ldots~x@{m^1@{k@1}}\right) \\
-     & \vdots \\
-     \Forall x@1 \dots x@{m^n@1}.
-       \List{P@{s^n@{1,1}}~x@{r^n@{1,1}}; \dots;
-         P@{s^n@{1,l^n@1}}~x@{r^n@{1,l^n@1}}} & \Imp &
-           P@n~\left(C^n@1~x@1~\ldots~x@{m^n@1}\right) \\
-     & \vdots \\
-     \Forall x@1 \dots x@{m^n@{k@n}}.
-       \List{P@{s^n@{k@n,1}}~x@{r^n@{k@n,1}}; \dots
-         P@{s^n@{k@n,l^n@{k@n}}}~x@{r^n@{k@n,l^n@{k@n}}}} & \Imp &
-           P@n~\left(C^n@{k@n}~x@1~\ldots~x@{m^n@{k@n}}\right)
-   \end{array}}
-\]
-where
-\[
-\begin{array}{rcl}
-Rec^j@i & := &
-   \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
-     \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\} = \\[2ex]
-&& \left\{(i',i'')~\left|~
-     1\leq i' \leq m^j@i \land 1 \leq i'' \leq n \land
-       \tau^j@{i,i'} = (\alpha@1,\ldots,\alpha@h)t@{i''}\right.\right\}
-\end{array}
-\]
-i.e.\ the properties $P@j$ can be assumed for all recursive arguments.
-
-For datatypes with nested recursion, such as the \texttt{term} example from
-above, things are a bit more complicated.  Conceptually, Isabelle/HOL unfolds
-a definition like
-\begin{ttbox}
-datatype ('a,'b) term = Var 'a
-                      | App 'b ((('a, 'b) term) list)
-\end{ttbox}
-to an equivalent definition without nesting:
-\begin{ttbox}
-datatype ('a,'b) term      = Var
-                           | App 'b (('a, 'b) term_list)
-and      ('a,'b) term_list = Nil'
-                           | Cons' (('a,'b) term) (('a,'b) term_list)
-\end{ttbox}
-Note however, that the type \texttt{('a,'b) term_list} and the constructors {\tt
-  Nil'} and \texttt{Cons'} are not really introduced.  One can directly work with
-the original (isomorphic) type \texttt{(('a, 'b) term) list} and its existing
-constructors \texttt{Nil} and \texttt{Cons}. Thus, the structural induction rule for
-\texttt{term} gets the form
-\[
-\infer{P@1~x@1 \land P@2~x@2}
-  {\begin{array}{l}
-     \Forall x.~P@1~(\mathtt{Var}~x) \\
-     \Forall x@1~x@2.~P@2~x@2 \Imp P@1~(\mathtt{App}~x@1~x@2) \\
-     P@2~\mathtt{Nil} \\
-     \Forall x@1~x@2. \List{P@1~x@1; P@2~x@2} \Imp P@2~(\mathtt{Cons}~x@1~x@2)
-   \end{array}}
-\]
-Note that there are two predicates $P@1$ and $P@2$, one for the type \texttt{('a,'b) term}
-and one for the type \texttt{(('a, 'b) term) list}.
-
-For a datatype with function types such as \texttt{'a tree}, the induction rule
-is of the form
-\[
-\infer{P~t}
-  {\Forall a.~P~(\mathtt{Atom}~a) &
-   \Forall ts.~(\forall x.~P~(ts~x)) \Imp P~(\mathtt{Branch}~ts)}
-\]
-
-\medskip In principle, inductive types are already fully determined by
-freeness and structural induction.  For convenience in applications,
-the following derived constructions are automatically provided for any
-datatype.
-
-\subsubsection{The \sdx{case} construct}
-
-The type comes with an \ML-like \texttt{case}-construct:
-\[
-\begin{array}{rrcl}
-\mbox{\tt case}~e~\mbox{\tt of} & C^j@1~x@{1,1}~\dots~x@{1,m^j@1} & \To & e@1 \\
-                           \vdots \\
-                           \mid & C^j@{k@j}~x@{k@j,1}~\dots~x@{k@j,m^j@{k@j}} & \To & e@{k@j}
-\end{array}
-\]
-where the $x@{i,j}$ are either identifiers or nested tuple patterns as in
-{\S}\ref{subsec:prod-sum}.
-\begin{warn}
-  All constructors must be present, their order is fixed, and nested patterns
-  are not supported (with the exception of tuples).  Violating this
-  restriction results in strange error messages.
-\end{warn}
-
-To perform case distinction on a goal containing a \texttt{case}-construct,
-the theorem $t@j.$\texttt{split} is provided:
-\[
-\begin{array}{@{}rcl@{}}
-P(t@j_\mathtt{case}~f@1~\dots~f@{k@j}~e) &\!\!\!=&
-\!\!\! ((\forall x@1 \dots x@{m^j@1}. e = C^j@1~x@1\dots x@{m^j@1} \to
-                             P(f@1~x@1\dots x@{m^j@1})) \\
-&&\!\!\! ~\land~ \dots ~\land \\
-&&~\!\!\! (\forall x@1 \dots x@{m^j@{k@j}}. e = C^j@{k@j}~x@1\dots x@{m^j@{k@j}} \to
-                             P(f@{k@j}~x@1\dots x@{m^j@{k@j}})))
-\end{array}
-\]
-where $t@j$\texttt{_case} is the internal name of the \texttt{case}-construct.
-This theorem can be added to a simpset via \ttindex{addsplits}
-(see~{\S}\ref{subsec:HOL:case:splitting}).
-
-Case splitting on assumption works as well, by using the rule
-$t@j.$\texttt{split_asm} in the same manner.  Both rules are available under
-$t@j.$\texttt{splits} (this name is \emph{not} bound in ML, though).
-
-\begin{warn}\index{simplification!of \texttt{case}}%
-  By default only the selector expression ($e$ above) in a
-  \texttt{case}-construct is simplified, in analogy with \texttt{if} (see
-  page~\pageref{if-simp}). Only if that reduces to a constructor is one of
-  the arms of the \texttt{case}-construct exposed and simplified. To ensure
-  full simplification of all parts of a \texttt{case}-construct for datatype
-  $t$, remove $t$\texttt{.}\ttindexbold{case_weak_cong} from the simpset, for
-  example by \texttt{delcongs [thm "$t$.weak_case_cong"]}.
-\end{warn}
-
-\subsubsection{The function \cdx{size}}\label{sec:HOL:size}
-
-Theory \texttt{NatArith} declares a generic function \texttt{size} of type
-$\alpha\To nat$.  Each datatype defines a particular instance of \texttt{size}
-by overloading according to the following scheme:
-%%% FIXME: This formula is too big and is completely unreadable
-\[
-size(C^j@i~x@1~\dots~x@{m^j@i}) = \!
-\left\{
-\begin{array}{ll}
-0 & \!\mbox{if $Rec^j@i = \emptyset$} \\
-1+\sum\limits@{h=1}^{l^j@i}size~x@{r^j@{i,h}} &
- \!\mbox{if $Rec^j@i = \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
-  \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\}$}
-\end{array}
-\right.
-\]
-where $Rec^j@i$ is defined above.  Viewing datatypes as generalised trees, the
-size of a leaf is 0 and the size of a node is the sum of the sizes of its
-subtrees ${}+1$.
-
-\subsection{Defining datatypes}
-
-The theory syntax for datatype definitions is given in the
-Isabelle/Isar reference manual.  In order to be well-formed, a
-datatype definition has to obey the rules stated in the previous
-section.  As a result the theory is extended with the new types, the
-constructors, and the theorems listed in the previous section.
-
-Most of the theorems about datatypes become part of the default simpset and
-you never need to see them again because the simplifier applies them
-automatically.  Only induction or case distinction are usually invoked by hand.
-\begin{ttdescription}
-\item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$]
- applies structural induction on variable $x$ to subgoal $i$, provided the
- type of $x$ is a datatype.
-\item[\texttt{induct_tac}
-  {\tt"}$x@1$ $\ldots$ $x@n${\tt"} $i$] applies simultaneous
-  structural induction on the variables $x@1,\ldots,x@n$ to subgoal $i$.  This
-  is the canonical way to prove properties of mutually recursive datatypes
-  such as \texttt{aexp} and \texttt{bexp}, or datatypes with nested recursion such as
-  \texttt{term}.
-\end{ttdescription}
-In some cases, induction is overkill and a case distinction over all
-constructors of the datatype suffices.
-\begin{ttdescription}
-\item[\ttindexbold{case_tac} {\tt"}$u${\tt"} $i$]
- performs a case analysis for the term $u$ whose type  must be a datatype.
- If the datatype has $k@j$ constructors  $C^j@1$, \dots $C^j@{k@j}$, subgoal
- $i$ is replaced by $k@j$ new subgoals which  contain the additional
- assumption $u = C^j@{i'}~x@1~\dots~x@{m^j@{i'}}$ for  $i'=1$, $\dots$,~$k@j$.
-\end{ttdescription}
-
-Note that induction is only allowed on free variables that should not occur
-among the premises of the subgoal. Case distinction applies to arbitrary terms.
-
-\bigskip
-
-
-For the technically minded, we exhibit some more details.  Processing the
-theory file produces an \ML\ structure which, in addition to the usual
-components, contains a structure named $t$ for each datatype $t$ defined in
-the file.  Each structure $t$ contains the following elements:
-\begin{ttbox}
-val distinct : thm list
-val inject : thm list
-val induct : thm
-val exhaust : thm
-val cases : thm list
-val split : thm
-val split_asm : thm
-val recs : thm list
-val size : thm list
-val simps : thm list
-\end{ttbox}
-\texttt{distinct}, \texttt{inject}, \texttt{induct}, \texttt{size}
-and \texttt{split} contain the theorems
-described above.  For user convenience, \texttt{distinct} contains
-inequalities in both directions.  The reduction rules of the {\tt
-  case}-construct are in \texttt{cases}.  All theorems from {\tt
-  distinct}, \texttt{inject} and \texttt{cases} are combined in \texttt{simps}.
-In case of mutually recursive datatypes, \texttt{recs}, \texttt{size}, \texttt{induct}
-and \texttt{simps} are contained in a separate structure named $t@1_\ldots_t@n$.
-
-
-\section{Old-style recursive function definitions}\label{sec:HOL:recursive}
-\index{recursion!general|(}
-\index{*recdef|(}
-
-Old-style recursive definitions via \texttt{recdef} requires that you
-supply a well-founded relation that governs the recursion.  Recursive
-calls are only allowed if they make the argument decrease under the
-relation.  Complicated recursion forms, such as nested recursion, can
-be dealt with.  Termination can even be proved at a later time, though
-having unsolved termination conditions around can make work
-difficult.%
-\footnote{This facility is based on Konrad Slind's TFL
-  package~\cite{slind-tfl}.  Thanks are due to Konrad for implementing
-  TFL and assisting with its installation.}
-
-Using \texttt{recdef}, you can declare functions involving nested recursion
-and pattern-matching.  Recursion need not involve datatypes and there are few
-syntactic restrictions.  Termination is proved by showing that each recursive
-call makes the argument smaller in a suitable sense, which you specify by
-supplying a well-founded relation.
-
-Here is a simple example, the Fibonacci function.  The first line declares
-\texttt{fib} to be a constant.  The well-founded relation is simply~$<$ (on
-the natural numbers).  Pattern-matching is used here: \texttt{1} is a
-macro for \texttt{Suc~0}.
-\begin{ttbox}
-consts fib  :: "nat => nat"
-recdef fib "less_than"
-    "fib 0 = 0"
-    "fib 1 = 1"
-    "fib (Suc(Suc x)) = (fib x + fib (Suc x))"
-\end{ttbox}
-
-With \texttt{recdef}, function definitions may be incomplete, and patterns may
-overlap, as in functional programming.  The \texttt{recdef} package
-disambiguates overlapping patterns by taking the order of rules into account.
-For missing patterns, the function is defined to return a default value.
-
-%For example, here is a declaration of the list function \cdx{hd}:
-%\begin{ttbox}
-%consts hd :: 'a list => 'a
-%recdef hd "\{\}"
-%    "hd (x#l) = x"
-%\end{ttbox}
-%Because this function is not recursive, we may supply the empty well-founded
-%relation, $\{\}$.
-
-The well-founded relation defines a notion of ``smaller'' for the function's
-argument type.  The relation $\prec$ is \textbf{well-founded} provided it
-admits no infinitely decreasing chains
-\[ \cdots\prec x@n\prec\cdots\prec x@1. \]
-If the function's argument has type~$\tau$, then $\prec$ has to be a relation
-over~$\tau$: it must have type $(\tau\times\tau)set$.
-
-Proving well-foundedness can be tricky, so Isabelle/HOL provides a collection
-of operators for building well-founded relations.  The package recognises
-these operators and automatically proves that the constructed relation is
-well-founded.  Here are those operators, in order of importance:
-\begin{itemize}
-\item \texttt{less_than} is ``less than'' on the natural numbers.
-  (It has type $(nat\times nat)set$, while $<$ has type $[nat,nat]\To bool$.
-  
-\item $\mathop{\mathtt{measure}} f$, where $f$ has type $\tau\To nat$, is the
-  relation~$\prec$ on type~$\tau$ such that $x\prec y$ if and only if
-  $f(x)<f(y)$.  
-  Typically, $f$ takes the recursive function's arguments (as a tuple) and
-  returns a result expressed in terms of the function \texttt{size}.  It is
-  called a \textbf{measure function}.  Recall that \texttt{size} is overloaded
-  and is defined on all datatypes (see {\S}\ref{sec:HOL:size}).
-                                                    
-\item $\mathop{\mathtt{inv_image}} R\;f$ is a generalisation of
-  \texttt{measure}.  It specifies a relation such that $x\prec y$ if and only
-  if $f(x)$ 
-  is less than $f(y)$ according to~$R$, which must itself be a well-founded
-  relation.
-
-\item $R@1\texttt{<*lex*>}R@2$ is the lexicographic product of two relations.
-  It 
-  is a relation on pairs and satisfies $(x@1,x@2)\prec(y@1,y@2)$ if and only
-  if $x@1$ 
-  is less than $y@1$ according to~$R@1$ or $x@1=y@1$ and $x@2$
-  is less than $y@2$ according to~$R@2$.
-
-\item \texttt{finite_psubset} is the proper subset relation on finite sets.
-\end{itemize}
-
-We can use \texttt{measure} to declare Euclid's algorithm for the greatest
-common divisor.  The measure function, $\lambda(m,n). n$, specifies that the
-recursion terminates because argument~$n$ decreases.
-\begin{ttbox}
-recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
-    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
-\end{ttbox}
-
-The general form of a well-founded recursive definition is
-\begin{ttbox}
-recdef {\it function} {\it rel}
-    congs   {\it congruence rules}      {\bf(optional)}
-    simpset {\it simplification set}      {\bf(optional)}
-   {\it reduction rules}
-\end{ttbox}
-where
-\begin{itemize}
-\item \textit{function} is the name of the function, either as an \textit{id}
-  or a \textit{string}.  
-  
-\item \textit{rel} is a HOL expression for the well-founded termination
-  relation.
-  
-\item \textit{congruence rules} are required only in highly exceptional
-  circumstances.
-  
-\item The \textit{simplification set} is used to prove that the supplied
-  relation is well-founded.  It is also used to prove the \textbf{termination
-    conditions}: assertions that arguments of recursive calls decrease under
-  \textit{rel}.  By default, simplification uses \texttt{simpset()}, which
-  is sufficient to prove well-foundedness for the built-in relations listed
-  above. 
-  
-\item \textit{reduction rules} specify one or more recursion equations.  Each
-  left-hand side must have the form $f\,t$, where $f$ is the function and $t$
-  is a tuple of distinct variables.  If more than one equation is present then
-  $f$ is defined by pattern-matching on components of its argument whose type
-  is a \texttt{datatype}.  
-
-  The \ML\ identifier $f$\texttt{.simps} contains the reduction rules as
-  a list of theorems.
-\end{itemize}
-
-With the definition of \texttt{gcd} shown above, Isabelle/HOL is unable to
-prove one termination condition.  It remains as a precondition of the
-recursion theorems:
-\begin{ttbox}
-gcd.simps;
-{\out ["! m n. n ~= 0 --> m mod n < n}
-{\out   ==> gcd (?m,?n) = (if ?n=0 then ?m else gcd (?n, ?m mod ?n))"] }
-{\out : thm list}
-\end{ttbox}
-The theory \texttt{HOL/ex/Primes} illustrates how to prove termination
-conditions afterwards.  The function \texttt{Tfl.tgoalw} is like the standard
-function \texttt{goalw}, which sets up a goal to prove, but its argument
-should be the identifier $f$\texttt{.simps} and its effect is to set up a
-proof of the termination conditions:
-\begin{ttbox}
-Tfl.tgoalw thy [] gcd.simps;
-{\out Level 0}
-{\out ! m n. n ~= 0 --> m mod n < n}
-{\out  1. ! m n. n ~= 0 --> m mod n < n}
-\end{ttbox}
-This subgoal has a one-step proof using \texttt{simp_tac}.  Once the theorem
-is proved, it can be used to eliminate the termination conditions from
-elements of \texttt{gcd.simps}.  Theory \texttt{HOL/Subst/Unify} is a much
-more complicated example of this process, where the termination conditions can
-only be proved by complicated reasoning involving the recursive function
-itself.
-
-Isabelle/HOL can prove the \texttt{gcd} function's termination condition
-automatically if supplied with the right simpset.
-\begin{ttbox}
-recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
-  simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"
-    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
-\end{ttbox}
-
-If all termination conditions were proved automatically, $f$\texttt{.simps}
-is added to the simpset automatically, just as in \texttt{primrec}. 
-The simplification rules corresponding to clause $i$ (where counting starts
-at 0) are called $f$\texttt{.}$i$ and can be accessed as \texttt{thms
-  "$f$.$i$"},
-which returns a list of theorems. Thus you can, for example, remove specific
-clauses from the simpset. Note that a single clause may give rise to a set of
-simplification rules in order to capture the fact that if clauses overlap,
-their order disambiguates them.
-
-A \texttt{recdef} definition also returns an induction rule specialised for
-the recursive function.  For the \texttt{gcd} function above, the induction
-rule is
-\begin{ttbox}
-gcd.induct;
-{\out "(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm}
-\end{ttbox}
-This rule should be used to reason inductively about the \texttt{gcd}
-function.  It usually makes the induction hypothesis available at all
-recursive calls, leading to very direct proofs.  If any termination conditions
-remain unproved, they will become additional premises of this rule.
-
-\index{recursion!general|)}
-\index{*recdef|)}
-
-
-\section{Example: Cantor's Theorem}\label{sec:hol-cantor}
-Cantor's Theorem states that every set has more subsets than it has
-elements.  It has become a favourite example in higher-order logic since
-it is so easily expressed:
-\[  \forall f::\alpha \To \alpha \To bool. \exists S::\alpha\To bool.
-    \forall x::\alpha. f~x \not= S 
-\] 
-%
-Viewing types as sets, $\alpha\To bool$ represents the powerset
-of~$\alpha$.  This version states that for every function from $\alpha$ to
-its powerset, some subset is outside its range.  
-
-The Isabelle proof uses HOL's set theory, with the type $\alpha\,set$ and
-the operator \cdx{range}.
-\begin{ttbox}
-context Set.thy;
-\end{ttbox}
-The set~$S$ is given as an unknown instead of a
-quantified variable so that we may inspect the subset found by the proof.
-\begin{ttbox}
-Goal "?S ~: range\thinspace(f :: 'a=>'a set)";
-{\out Level 0}
-{\out ?S ~: range f}
-{\out  1. ?S ~: range f}
-\end{ttbox}
-The first two steps are routine.  The rule \tdx{rangeE} replaces
-$\Var{S}\in \texttt{range} \, f$ by $\Var{S}=f~x$ for some~$x$.
-\begin{ttbox}
-by (resolve_tac [notI] 1);
-{\out Level 1}
-{\out ?S ~: range f}
-{\out  1. ?S : range f ==> False}
-\ttbreak
-by (eresolve_tac [rangeE] 1);
-{\out Level 2}
-{\out ?S ~: range f}
-{\out  1. !!x. ?S = f x ==> False}
-\end{ttbox}
-Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f~x$,
-we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f~x$ for
-any~$\Var{c}$.
-\begin{ttbox}
-by (eresolve_tac [equalityCE] 1);
-{\out Level 3}
-{\out ?S ~: range f}
-{\out  1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False}
-{\out  2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False}
-\end{ttbox}
-Now we use a bit of creativity.  Suppose that~$\Var{S}$ has the form of a
-comprehension.  Then $\Var{c}\in\{x.\Var{P}~x\}$ implies
-$\Var{P}~\Var{c}$.   Destruct-resolution using \tdx{CollectD}
-instantiates~$\Var{S}$ and creates the new assumption.
-\begin{ttbox}
-by (dresolve_tac [CollectD] 1);
-{\out Level 4}
-{\out {\ttlbrace}x. ?P7 x{\ttrbrace} ~: range f}
-{\out  1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False}
-{\out  2. !!x. [| ?c3 x ~: {\ttlbrace}x. ?P7 x{\ttrbrace}; ?c3 x ~: f x |] ==> False}
-\end{ttbox}
-Forcing a contradiction between the two assumptions of subgoal~1
-completes the instantiation of~$S$.  It is now the set $\{x. x\not\in
-f~x\}$, which is the standard diagonal construction.
-\begin{ttbox}
-by (contr_tac 1);
-{\out Level 5}
-{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
-{\out  1. !!x. [| x ~: {\ttlbrace}x. x ~: f x{\ttrbrace}; x ~: f x |] ==> False}
-\end{ttbox}
-The rest should be easy.  To apply \tdx{CollectI} to the negated
-assumption, we employ \ttindex{swap_res_tac}:
-\begin{ttbox}
-by (swap_res_tac [CollectI] 1);
-{\out Level 6}
-{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
-{\out  1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x}
-\ttbreak
-by (assume_tac 1);
-{\out Level 7}
-{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
-{\out No subgoals!}
-\end{ttbox}
-How much creativity is required?  As it happens, Isabelle can prove this
-theorem automatically.  The default classical set \texttt{claset()} contains
-rules for most of the constructs of HOL's set theory.  We must augment it with
-\tdx{equalityCE} to break up set equalities, and then apply best-first search.
-Depth-first search would diverge, but best-first search successfully navigates
-through the large search space.  \index{search!best-first}
-\begin{ttbox}
-choplev 0;
-{\out Level 0}
-{\out ?S ~: range f}
-{\out  1. ?S ~: range f}
-\ttbreak
-by (best_tac (claset() addSEs [equalityCE]) 1);
-{\out Level 1}
-{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
-{\out No subgoals!}
-\end{ttbox}
-If you run this example interactively, make sure your current theory contains
-theory \texttt{Set}, for example by executing \ttindex{context}~{\tt Set.thy}.
-Otherwise the default claset may not contain the rules for set theory.
-\index{higher-order logic|)}
-
-%%% Local Variables: 
-%%% mode: latex
-%%% TeX-master: "logics-HOL"
-%%% End: