src/HOL/Imperative_HOL/Mrec.thy
changeset 37772 026ed2fc15d4
child 37787 30dc3abf4a58
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Imperative_HOL/Mrec.thy	Mon Jul 12 16:19:15 2010 +0200
@@ -0,0 +1,165 @@
+theory Mrec
+imports Heap_Monad
+begin
+
+subsubsection {* A monadic combinator for simple recursive functions *}
+
+text {* Using a locale to fix arguments f and g of MREC *}
+
+locale mrec =
+  fixes f :: "'a \<Rightarrow> ('b + 'a) Heap"
+  and g :: "'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b Heap"
+begin
+
+function (default "\<lambda>(x, h). None") mrec :: "'a \<Rightarrow> heap \<Rightarrow> ('b \<times> heap) option" where
+  "mrec x h = (case execute (f x) h of
+     Some (Inl r, h') \<Rightarrow> Some (r, h')
+   | Some (Inr s, h') \<Rightarrow> (case mrec s h' of
+             Some (z, h'') \<Rightarrow> execute (g x s z) h''
+           | None \<Rightarrow> None)
+   | None \<Rightarrow> None)"
+by auto
+
+lemma graph_implies_dom:
+  "mrec_graph x y \<Longrightarrow> mrec_dom x"
+apply (induct rule:mrec_graph.induct) 
+apply (rule accpI)
+apply (erule mrec_rel.cases)
+by simp
+
+lemma mrec_default: "\<not> mrec_dom (x, h) \<Longrightarrow> mrec x h = None"
+  unfolding mrec_def 
+  by (rule fundef_default_value[OF mrec_sumC_def graph_implies_dom, of _ _ "(x, h)", simplified])
+
+lemma mrec_di_reverse: 
+  assumes "\<not> mrec_dom (x, h)"
+  shows "
+   (case execute (f x) h of
+     Some (Inl r, h') \<Rightarrow> False
+   | Some (Inr s, h') \<Rightarrow> \<not> mrec_dom (s, h')
+   | None \<Rightarrow> False
+   )" 
+using assms apply (auto split: option.split sum.split)
+apply (rule ccontr)
+apply (erule notE, rule accpI, elim mrec_rel.cases, auto)+
+done
+
+lemma mrec_rule:
+  "mrec x h = 
+   (case execute (f x) h of
+     Some (Inl r, h') \<Rightarrow> Some (r, h')
+   | Some (Inr s, h') \<Rightarrow> 
+          (case mrec s h' of
+             Some (z, h'') \<Rightarrow> execute (g x s z) h''
+           | None \<Rightarrow> None)
+   | None \<Rightarrow> None
+   )"
+apply (cases "mrec_dom (x,h)", simp)
+apply (frule mrec_default)
+apply (frule mrec_di_reverse, simp)
+by (auto split: sum.split option.split simp: mrec_default)
+
+definition
+  "MREC x = Heap_Monad.Heap (mrec x)"
+
+lemma MREC_rule:
+  "MREC x = 
+  (do y \<leftarrow> f x;
+                (case y of 
+                Inl r \<Rightarrow> return r
+              | Inr s \<Rightarrow> 
+                do z \<leftarrow> MREC s ;
+                   g x s z
+                done) done)"
+  unfolding MREC_def
+  unfolding bind_def return_def
+  apply simp
+  apply (rule ext)
+  apply (unfold mrec_rule[of x])
+  by (auto split: option.splits prod.splits sum.splits)
+
+lemma MREC_pinduct:
+  assumes "execute (MREC x) h = Some (r, h')"
+  assumes non_rec_case: "\<And> x h h' r. execute (f x) h = Some (Inl r, h') \<Longrightarrow> P x h h' r"
+  assumes rec_case: "\<And> x h h1 h2 h' s z r. execute (f x) h = Some (Inr s, h1) \<Longrightarrow> execute (MREC s) h1 = Some (z, h2) \<Longrightarrow> P s h1 h2 z
+    \<Longrightarrow> execute (g x s z) h2 = Some (r, h') \<Longrightarrow> P x h h' r"
+  shows "P x h h' r"
+proof -
+  from assms(1) have mrec: "mrec x h = Some (r, h')"
+    unfolding MREC_def execute.simps .
+  from mrec have dom: "mrec_dom (x, h)"
+    apply -
+    apply (rule ccontr)
+    apply (drule mrec_default) by auto
+  from mrec have h'_r: "h' = snd (the (mrec x h))" "r = fst (the (mrec x h))"
+    by auto
+  from mrec have "P x h (snd (the (mrec x h))) (fst (the (mrec x h)))"
+  proof (induct arbitrary: r h' rule: mrec.pinduct[OF dom])
+    case (1 x h)
+    obtain rr h' where "the (mrec x h) = (rr, h')" by fastsimp
+    show ?case
+    proof (cases "execute (f x) h")
+      case (Some result)
+      then obtain a h1 where exec_f: "execute (f x) h = Some (a, h1)" by fastsimp
+      note Inl' = this
+      show ?thesis
+      proof (cases a)
+        case (Inl aa)
+        from this Inl' 1(1) exec_f mrec non_rec_case show ?thesis
+          by auto
+      next
+        case (Inr b)
+        note Inr' = this
+        show ?thesis
+        proof (cases "mrec b h1")
+          case (Some result)
+          then obtain aaa h2 where mrec_rec: "mrec b h1 = Some (aaa, h2)" by fastsimp
+          moreover from this have "P b h1 (snd (the (mrec b h1))) (fst (the (mrec b h1)))"
+            apply (intro 1(2))
+            apply (auto simp add: Inr Inl')
+            done
+          moreover note mrec mrec_rec exec_f Inl' Inr' 1(1) 1(3)
+          ultimately show ?thesis
+            apply auto
+            apply (rule rec_case)
+            apply auto
+            unfolding MREC_def by auto
+        next
+          case None
+          from this 1(1) exec_f mrec Inr' 1(3) show ?thesis by auto
+        qed
+      qed
+    next
+      case None
+      from this 1(1) mrec 1(3) show ?thesis by simp
+    qed
+  qed
+  from this h'_r show ?thesis by simp
+qed
+
+end
+
+text {* Providing global versions of the constant and the theorems *}
+
+abbreviation "MREC == mrec.MREC"
+lemmas MREC_rule = mrec.MREC_rule
+lemmas MREC_pinduct = mrec.MREC_pinduct
+
+lemma MREC_induct:
+  assumes "crel (MREC f g x) h h' r"
+  assumes "\<And> x h h' r. crel (f x) h h' (Inl r) \<Longrightarrow> P x h h' r"
+  assumes "\<And> x h h1 h2 h' s z r. crel (f x) h h1 (Inr s) \<Longrightarrow> crel (MREC f g s) h1 h2 z \<Longrightarrow> P s h1 h2 z
+    \<Longrightarrow> crel (g x s z) h2 h' r \<Longrightarrow> P x h h' r"
+  shows "P x h h' r"
+proof (rule MREC_pinduct[OF assms(1) [unfolded crel_def]])
+  fix x h h1 h2 h' s z r
+  assume "Heap_Monad.execute (f x) h = Some (Inr s, h1)"
+    "Heap_Monad.execute (MREC f g s) h1 = Some (z, h2)"
+    "P s h1 h2 z"
+    "Heap_Monad.execute (g x s z) h2 = Some (r, h')"
+  from assms(3) [unfolded crel_def, OF this(1) this(2) this(3) this(4)]
+  show "P x h h' r" .
+next
+qed (auto simp add: assms(2)[unfolded crel_def])
+
+end