src/HOL/Product_Type.thy
changeset 11838 02d75712061d
parent 11820 015a82d4ee96
child 11966 8fe2ee787608
--- a/src/HOL/Product_Type.thy	Fri Oct 19 22:00:08 2001 +0200
+++ b/src/HOL/Product_Type.thy	Fri Oct 19 22:01:25 2001 +0200
@@ -4,13 +4,62 @@
     Copyright   1992  University of Cambridge
 *)
 
-header {* Finite products (including unit) *}
+header {* Cartesian products *}
 
 theory Product_Type = Fun
-files ("Product_Type_lemmas.ML") ("Tools/split_rule.ML"):
+files ("Tools/split_rule.ML"):
+
+subsection {* Unit *}
+
+typedef unit = "{True}"
+proof
+  show "True : ?unit" by blast
+qed
+
+constdefs
+  Unity :: unit    ("'(')")
+  "() == Abs_unit True"
+
+lemma unit_eq: "u = ()"
+  by (induct u) (simp add: unit_def Unity_def)
+
+text {*
+  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
+  this rule directly --- it loops!
+*}
+
+ML_setup {*
+  local
+    val unit_pat = Thm.cterm_of (Theory.sign_of (the_context ())) (Free ("x", HOLogic.unitT));
+    val unit_meta_eq = standard (mk_meta_eq (thm "unit_eq"));
+    fun proc _ _ t =
+      if HOLogic.is_unit t then None
+      else Some unit_meta_eq
+  in val unit_eq_proc = Simplifier.mk_simproc "unit_eq" [unit_pat] proc end;
+
+  Addsimprocs [unit_eq_proc];
+*}
+
+lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
+  by simp
+
+lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
+  by (rule triv_forall_equality)
+
+lemma unit_induct [induct type: unit]: "P () ==> P x"
+  by simp
+
+text {*
+  This rewrite counters the effect of @{text unit_eq_proc} on @{term
+  [source] "%u::unit. f u"}, replacing it by @{term [source]
+  f} rather than by @{term [source] "%u. f ()"}.
+*}
+
+lemma unit_abs_eta_conv [simp]: "(%u::unit. f ()) = f"
+  by (rule ext) simp
 
 
-subsection {* Products *}
+subsection {* Pairs *}
 
 subsubsection {* Type definition *}
 
@@ -21,7 +70,7 @@
 global
 
 typedef (Prod)
-  ('a, 'b) "*"          (infixr 20)
+  ('a, 'b) "*"    (infixr 20)
     = "{f. EX a b. f = Pair_Rep (a::'a) (b::'b)}"
 proof
   fix a b show "Pair_Rep a b : ?Prod"
@@ -98,24 +147,78 @@
   Sigma_def:    "Sigma A B == UN x:A. UN y:B(x). {(x, y)}"
 
 
-subsection {* Unit *}
+subsubsection {* Lemmas and tool setup *}
+
+lemma ProdI: "Pair_Rep a b : Prod"
+  by (unfold Prod_def) blast
+
+lemma Pair_Rep_inject: "Pair_Rep a b = Pair_Rep a' b' ==> a = a' & b = b'"
+  apply (unfold Pair_Rep_def)
+  apply (drule fun_cong [THEN fun_cong])
+  apply blast
+  done
 
-typedef unit = "{True}"
-proof
-  show "True : ?unit"
-    by blast
+lemma inj_on_Abs_Prod: "inj_on Abs_Prod Prod"
+  apply (rule inj_on_inverseI)
+  apply (erule Abs_Prod_inverse)
+  done
+
+lemma Pair_inject:
+  "(a, b) = (a', b') ==> (a = a' ==> b = b' ==> R) ==> R"
+proof -
+  case rule_context [unfolded Pair_def]
+  show ?thesis
+    apply (rule inj_on_Abs_Prod [THEN inj_onD, THEN Pair_Rep_inject, THEN conjE])
+    apply (rule rule_context ProdI)+
+    .
 qed
 
-constdefs
-  Unity :: unit    ("'(')")
-  "() == Abs_unit True"
+lemma Pair_eq [iff]: "((a, b) = (a', b')) = (a = a' & b = b')"
+  by (blast elim!: Pair_inject)
+
+lemma fst_conv [simp]: "fst (a, b) = a"
+  by (unfold fst_def) blast
+
+lemma snd_conv [simp]: "snd (a, b) = b"
+  by (unfold snd_def) blast
 
+lemma fst_eqD: "fst (x, y) = a ==> x = a"
+  by simp
+
+lemma snd_eqD: "snd (x, y) = a ==> y = a"
+  by simp
+
+lemma PairE_lemma: "EX x y. p = (x, y)"
+  apply (unfold Pair_def)
+  apply (rule Rep_Prod [unfolded Prod_def, THEN CollectE])
+  apply (erule exE, erule exE, rule exI, rule exI)
+  apply (rule Rep_Prod_inverse [symmetric, THEN trans])
+  apply (erule arg_cong)
+  done
 
-subsection {* Lemmas and tool setup *}
+lemma PairE [cases type: *]: "(!!x y. p = (x, y) ==> Q) ==> Q"
+  by (insert PairE_lemma [of p]) blast
+
+ML_setup {*
+  local val PairE = thm "PairE" in
+    fun pair_tac s =
+      EVERY' [res_inst_tac [("p", s)] PairE, hyp_subst_tac, K prune_params_tac];
+  end;
+*}
 
-use "Product_Type_lemmas.ML"
+lemma surjective_pairing: "p = (fst p, snd p)"
+  -- {* Do not add as rewrite rule: invalidates some proofs in IMP *}
+  by (cases p) simp
+
+declare surjective_pairing [symmetric, simp]
 
-lemma (*split_paired_all:*) "(!!x. PROP P x) == (!!a b. PROP P (a, b))"   (* FIXME unused *)
+lemma surj_pair [simp]: "EX x y. z = (x, y)"
+  apply (rule exI)
+  apply (rule exI)
+  apply (rule surjective_pairing)
+  done
+
+lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
 proof
   fix a b
   assume "!!x. PROP P x"
@@ -127,12 +230,457 @@
   thus "PROP P x" by simp
 qed
 
+lemmas split_tupled_all = split_paired_all unit_all_eq2
+
+text {*
+  The rule @{thm [source] split_paired_all} does not work with the
+  Simplifier because it also affects premises in congrence rules,
+  where this can lead to premises of the form @{text "!!a b. ... =
+  ?P(a, b)"} which cannot be solved by reflexivity.
+*}
+
+ML_setup "
+  (* replace parameters of product type by individual component parameters *)
+  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
+  local (* filtering with exists_paired_all is an essential optimization *)
+    fun exists_paired_all (Const (\"all\", _) $ Abs (_, T, t)) =
+          can HOLogic.dest_prodT T orelse exists_paired_all t
+      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
+      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
+      | exists_paired_all _ = false;
+    val ss = HOL_basic_ss
+      addsimps [thm \"split_paired_all\", thm \"unit_all_eq2\", thm \"unit_abs_eta_conv\"]
+      addsimprocs [unit_eq_proc];
+  in
+    val split_all_tac = SUBGOAL (fn (t, i) =>
+      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
+    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
+      if exists_paired_all t then full_simp_tac ss i else no_tac);
+    fun split_all th =
+   if exists_paired_all (#prop (Thm.rep_thm th)) then full_simplify ss th else th;
+  end;
+
+claset_ref() := claset() addSbefore (\"split_all_tac\", split_all_tac);
+"
+
+lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))"
+  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
+  by fast
+
+lemma prod_induct [induct type: *]: "!!x. (!!a b. P (a, b)) ==> P x"
+  by fast
+
+lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
+  by fast
+
+lemma split_conv [simp]: "split c (a, b) = c a b"
+  by (simp add: split_def)
+
+lemmas split = split_conv  -- {* for backwards compatibility *}
+
+lemmas splitI = split_conv [THEN iffD2, standard]
+lemmas splitD = split_conv [THEN iffD1, standard]
+
+lemma split_Pair_apply: "split (%x y. f (x, y)) = f"
+  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
+  apply (rule ext)
+  apply (tactic {* pair_tac "x" 1 *})
+  apply simp
+  done
+
+lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
+  -- {* Can't be added to simpset: loops! *}
+  by (simp add: split_Pair_apply)
+
+lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
+  by (simp add: split_def)
+
+lemma Pair_fst_snd_eq: "!!s t. (s = t) = (fst s = fst t & snd s = snd t)"
+  apply (simp only: split_tupled_all)
+  apply simp
+  done
+
+lemma prod_eqI [intro?]: "fst p = fst q ==> snd p = snd q ==> p = q"
+  by (simp add: Pair_fst_snd_eq)
+
+lemma split_weak_cong: "p = q ==> split c p = split c q"
+  -- {* Prevents simplification of @{term c}: much faster *}
+  by (erule arg_cong)
+
+lemma split_eta: "(%(x, y). f (x, y)) = f"
+  apply (rule ext)
+  apply (simp only: split_tupled_all)
+  apply (rule split_conv)
+  done
+
+lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
+  by (simp add: split_eta)
+
+text {*
+  Simplification procedure for @{thm [source] cond_split_eta}.  Using
+  @{thm [source] split_eta} as a rewrite rule is not general enough,
+  and using @{thm [source] cond_split_eta} directly would render some
+  existing proofs very inefficient; similarly for @{text
+  split_beta}. *}
+
+ML_setup {*
+
+local
+  val cond_split_eta = thm "cond_split_eta";
+  fun  Pair_pat k 0 (Bound m) = (m = k)
+  |    Pair_pat k i (Const ("Pair",  _) $ Bound m $ t) = i > 0 andalso
+                        m = k+i andalso Pair_pat k (i-1) t
+  |    Pair_pat _ _ _ = false;
+  fun no_args k i (Abs (_, _, t)) = no_args (k+1) i t
+  |   no_args k i (t $ u) = no_args k i t andalso no_args k i u
+  |   no_args k i (Bound m) = m < k orelse m > k+i
+  |   no_args _ _ _ = true;
+  fun split_pat tp i (Abs  (_,_,t)) = if tp 0 i t then Some (i,t) else None
+  |   split_pat tp i (Const ("split", _) $ Abs (_, _, t)) = split_pat tp (i+1) t
+  |   split_pat tp i _ = None;
+  fun metaeq sg lhs rhs = mk_meta_eq (prove_goalw_cterm []
+        (cterm_of sg (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs,rhs))))
+        (K [simp_tac (HOL_basic_ss addsimps [cond_split_eta]) 1]));
+  val sign = sign_of (the_context ());
+  fun simproc name patstr = Simplifier.mk_simproc name
+                [Thm.read_cterm sign (patstr, HOLogic.termT)];
+
+  val beta_patstr = "split f z";
+  val  eta_patstr = "split f";
+  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k+1) i t
+  |   beta_term_pat k i (t $ u) = Pair_pat k i (t $ u) orelse
+                        (beta_term_pat k i t andalso beta_term_pat k i u)
+  |   beta_term_pat k i t = no_args k i t;
+  fun  eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
+  |    eta_term_pat _ _ _ = false;
+  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
+  |   subst arg k i (t $ u) = if Pair_pat k i (t $ u) then incr_boundvars k arg
+                              else (subst arg k i t $ subst arg k i u)
+  |   subst arg k i t = t;
+  fun beta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t) $ arg) =
+        (case split_pat beta_term_pat 1 t of
+        Some (i,f) => Some (metaeq sg s (subst arg 0 i f))
+        | None => None)
+  |   beta_proc _ _ _ = None;
+  fun eta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t)) =
+        (case split_pat eta_term_pat 1 t of
+          Some (_,ft) => Some (metaeq sg s (let val (f $ arg) = ft in f end))
+        | None => None)
+  |   eta_proc _ _ _ = None;
+in
+  val split_beta_proc = simproc "split_beta" beta_patstr beta_proc;
+  val split_eta_proc  = simproc "split_eta"   eta_patstr  eta_proc;
+end;
+
+Addsimprocs [split_beta_proc, split_eta_proc];
+*}
+
+lemma split_beta: "(%(x, y). P x y) z = P (fst z) (snd z)"
+  by (subst surjective_pairing, rule split_conv)
+
+lemma split_split: "R (split c p) = (ALL x y. p = (x, y) --> R (c x y))"
+  -- {* For use with @{text split} and the Simplifier. *}
+  apply (subst surjective_pairing)
+  apply (subst split_conv)
+  apply blast
+  done
+
+text {*
+  @{thm [source] split_split} could be declared as @{text "[split]"}
+  done after the Splitter has been speeded up significantly;
+  precompute the constants involved and don't do anything unless the
+  current goal contains one of those constants.
+*}
+
+lemma split_split_asm: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
+  apply (subst split_split)
+  apply simp
+  done
+
+
+text {*
+  \medskip @{term split} used as a logical connective or set former.
+
+  \medskip These rules are for use with @{text blast}; could instead
+  call @{text simp} using @{thm [source] split} as rewrite. *}
+
+lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
+  apply (simp only: split_tupled_all)
+  apply (simp (no_asm_simp))
+  done
+
+lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
+  apply (simp only: split_tupled_all)
+  apply (simp (no_asm_simp))
+  done
+
+lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
+  by (induct p) (auto simp add: split_def)
+
+lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
+  by (induct p) (auto simp add: split_def)
+
+lemma splitE2:
+  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
+proof -
+  assume q: "Q (split P z)"
+  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
+  show R
+    apply (rule r surjective_pairing)+
+    apply (rule split_beta [THEN subst], rule q)
+    done
+qed
+
+lemma splitD': "split R (a,b) c ==> R a b c"
+  by simp
+
+lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
+  by simp
+
+lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
+  apply (simp only: split_tupled_all)
+  apply simp
+  done
+
+lemma mem_splitE: "[| z: split c p; !!x y. [| p = (x,y); z: c x y |] ==> Q |] ==> Q"
+proof -
+  case rule_context [unfolded split_def]
+  show ?thesis by (rule rule_context surjective_pairing)+
+qed
+
+declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
+declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
+
+ML_setup "
+local (* filtering with exists_p_split is an essential optimization *)
+  fun exists_p_split (Const (\"split\",_) $ _ $ (Const (\"Pair\",_)$_$_)) = true
+    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
+    | exists_p_split (Abs (_, _, t)) = exists_p_split t
+    | exists_p_split _ = false;
+  val ss = HOL_basic_ss addsimps [thm \"split_conv\"];
+in
+val split_conv_tac = SUBGOAL (fn (t, i) =>
+    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
+end;
+(* This prevents applications of splitE for already splitted arguments leading
+   to quite time-consuming computations (in particular for nested tuples) *)
+claset_ref() := claset() addSbefore (\"split_conv_tac\", split_conv_tac);
+"
+
+lemma split_eta_SetCompr [simp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
+  apply (rule ext)
+  apply fast
+  done
+
+lemma split_eta_SetCompr2 [simp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
+  apply (rule ext)
+  apply fast
+  done
+
+lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
+  -- {* Allows simplifications of nested splits in case of independent predicates. *}
+  apply (rule ext)
+  apply blast
+  done
+
+lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
+  by blast
+
+(*
+the following  would be slightly more general,
+but cannot be used as rewrite rule:
+### Cannot add premise as rewrite rule because it contains (type) unknowns:
+### ?y = .x
+Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
+by (rtac some_equality 1);
+by ( Simp_tac 1);
+by (split_all_tac 1);
+by (Asm_full_simp_tac 1);
+qed "The_split_eq";
+*)
+
+lemma injective_fst_snd: "!!x y. [|fst x = fst y; snd x = snd y|] ==> x = y"
+  by auto
+
+
+text {*
+  \bigskip @{term prod_fun} --- action of the product functor upon
+  functions.
+*}
+
+lemma prod_fun [simp]: "prod_fun f g (a, b) = (f a, g b)"
+  by (simp add: prod_fun_def)
+
+lemma prod_fun_compose: "prod_fun (f1 o f2) (g1 o g2) = (prod_fun f1 g1 o prod_fun f2 g2)"
+  apply (rule ext)
+  apply (tactic {* pair_tac "x" 1 *})
+  apply simp
+  done
+
+lemma prod_fun_ident [simp]: "prod_fun (%x. x) (%y. y) = (%z. z)"
+  apply (rule ext)
+  apply (tactic {* pair_tac "z" 1 *})
+  apply simp
+  done
+
+lemma prod_fun_imageI [intro]: "(a, b) : r ==> (f a, g b) : prod_fun f g ` r"
+  apply (rule image_eqI)
+  apply (rule prod_fun [symmetric])
+  apply assumption
+  done
+
+lemma prod_fun_imageE [elim!]:
+  "[| c: (prod_fun f g)`r;  !!x y. [| c=(f(x),g(y));  (x,y):r |] ==> P
+    |] ==> P"
+proof -
+  case rule_context
+  assume major: "c: (prod_fun f g)`r"
+  show ?thesis
+    apply (rule major [THEN imageE])
+    apply (rule_tac p = x in PairE)
+    apply (rule rule_context)
+     prefer 2
+     apply blast
+    apply (blast intro: prod_fun)
+    done
+qed
+
+
+text {*
+  \bigskip Disjoint union of a family of sets -- Sigma.
+*}
+
+lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
+  by (unfold Sigma_def) blast
+
+
+lemma SigmaE:
+    "[| c: Sigma A B;
+        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
+     |] ==> P"
+  -- {* The general elimination rule. *}
+  by (unfold Sigma_def) blast
+
+text {*
+  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
+  eigenvariables.
+*}
+
+lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
+  apply (erule SigmaE)
+  apply blast
+  done
+
+lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
+  apply (erule SigmaE)
+  apply blast
+  done
+
+lemma SigmaE2:
+    "[| (a, b) : Sigma A B;
+        [| a:A;  b:B(a) |] ==> P
+     |] ==> P"
+  by (blast dest: SigmaD1 SigmaD2)
+
+declare SigmaE [elim!] SigmaE2 [elim!]
+
+lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
+  by blast
+
+lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
+  by blast
+
+lemma Sigma_empty2 [simp]: "A <*> {} = {}"
+  by blast
+
+lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
+  by auto
+
+lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
+  by auto
+
+lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
+  by auto
+
+lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
+  by blast
+
+lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
+  by blast
+
+lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
+  by (blast elim: equalityE)
+
+lemma SetCompr_Sigma_eq:
+    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
+  by blast
+
+text {*
+  \bigskip Complex rules for Sigma.
+*}
+
+lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
+  by blast
+
+lemma UN_Times_distrib:
+  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
+  -- {* Suggested by Pierre Chartier *}
+  by blast
+
+lemma split_paired_Ball_Sigma [simp]:
+    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
+  by blast
+
+lemma split_paired_Bex_Sigma [simp]:
+    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
+  by blast
+
+lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
+  by blast
+
+lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
+  by blast
+
+lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
+  by blast
+
+lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
+  by blast
+
+lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
+  by blast
+
+lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
+  by blast
+
+lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
+  by blast
+
+text {*
+  Non-dependent versions are needed to avoid the need for higher-order
+  matching, especially when the rules are re-oriented.
+*}
+
+lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
+  by blast
+
+lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
+  by blast
+
+lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
+  by blast
+
+
 lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
   apply (rule_tac x = "(a, b)" in image_eqI)
    apply auto
   done
 
 
+text {*
+  Setup of internal @{text split_rule}.
+*}
+
 constdefs
   internal_split :: "('a => 'b => 'c) => 'a * 'b => 'c"
   "internal_split == split"