src/HOL/Data_Structures/Set2_Join.thy
changeset 68261 035c78bb0a66
parent 67967 5a4280946a25
child 68413 b56ed5010e69
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Set2_Join.thy	Thu May 24 14:42:47 2018 +0200
@@ -0,0 +1,357 @@
+(* Author: Tobias Nipkow *)
+
+section "Join-Based Implementation of Sets"
+
+theory Set2_Join
+imports
+  Isin2
+begin
+
+text \<open>This theory implements the set operations \<open>insert\<close>, \<open>delete\<close>,
+\<open>union\<close>, \<open>inter\<close>section and \<open>diff\<close>erence. The implementation is based on binary search trees.
+All operations are reduced to a single operation \<open>join l x r\<close> that joins two BSTs \<open>l\<close> and \<open>r\<close>
+and an element \<open>x\<close> such that \<open>l < x < r\<close>.
+
+The theory is based on theory @{theory Tree2} where nodes have an additional field.
+This field is ignored here but it means that this theory can be instantiated
+with red-black trees (see theory @{file "Set2_Join_RBT.thy"}) and other balanced trees.
+This approach is very concrete and fixes the type of trees.
+Alternatively, one could assume some abstract type @{typ 't} of trees with suitable decomposition
+and recursion operators on it.\<close>
+
+locale Set2_Join =
+fixes join :: "('a::linorder,'b) tree \<Rightarrow> 'a \<Rightarrow> ('a,'b) tree \<Rightarrow> ('a,'b) tree"
+fixes inv :: "('a,'b) tree \<Rightarrow> bool"
+assumes set_join: "set_tree (join l a r) = set_tree l \<union> {a} \<union> set_tree r"
+assumes bst_join:
+  "\<lbrakk> bst l; bst r; \<forall>x \<in> set_tree l. x < a; \<forall>y \<in> set_tree r. a < y \<rbrakk>
+  \<Longrightarrow> bst (join l a r)"
+assumes inv_Leaf: "inv \<langle>\<rangle>"
+assumes inv_join: "\<lbrakk> inv l; inv r \<rbrakk> \<Longrightarrow> inv (join l k r)"
+assumes inv_Node: "\<lbrakk> inv (Node h l x r) \<rbrakk> \<Longrightarrow> inv l \<and> inv r"
+begin
+
+declare set_join [simp]
+
+subsection "\<open>split_min\<close>"
+
+fun split_min :: "('a,'b) tree \<Rightarrow> 'a \<times> ('a,'b) tree" where
+"split_min (Node _ l x r) =
+  (if l = Leaf then (x,r) else let (m,l') = split_min l in (m, join l' x r))"
+
+lemma split_min_set:
+  "\<lbrakk> split_min t = (x,t');  t \<noteq> Leaf \<rbrakk> \<Longrightarrow> x \<in> set_tree t \<and> set_tree t = Set.insert x (set_tree t')"
+proof(induction t arbitrary: t')
+  case Node thus ?case by(auto split: prod.splits if_splits dest: inv_Node)
+next
+  case Leaf thus ?case by simp
+qed
+
+lemma split_min_bst:
+  "\<lbrakk> split_min t = (x,t');  bst t;  t \<noteq> Leaf \<rbrakk> \<Longrightarrow>  bst t' \<and> (\<forall>x' \<in> set_tree t'. x < x')"
+proof(induction t arbitrary: t')
+  case Node thus ?case by(fastforce simp: split_min_set bst_join split: prod.splits if_splits)
+next
+  case Leaf thus ?case by simp
+qed
+
+lemma split_min_inv:
+  "\<lbrakk> split_min t = (x,t');  inv t;  t \<noteq> Leaf \<rbrakk> \<Longrightarrow>  inv t'"
+proof(induction t arbitrary: t')
+  case Node thus ?case by(auto simp: inv_join split: prod.splits if_splits dest: inv_Node)
+next
+  case Leaf thus ?case by simp
+qed
+
+
+subsection "\<open>join2\<close>"
+
+definition join2 :: "('a,'b) tree \<Rightarrow> ('a,'b) tree \<Rightarrow> ('a,'b) tree" where
+"join2 l r = (if r = Leaf then l else let (x,r') = split_min r in join l x r')"
+
+lemma set_join2[simp]: "set_tree (join2 l r) = set_tree l \<union> set_tree r"
+by(simp add: join2_def split_min_set split: prod.split)
+
+lemma bst_join2: "\<lbrakk> bst l; bst r; \<forall>x \<in> set_tree l. \<forall>y \<in> set_tree r. x < y \<rbrakk>
+  \<Longrightarrow> bst (join2 l r)"
+by(simp add: join2_def bst_join split_min_set split_min_bst split: prod.split)
+
+lemma inv_join2: "\<lbrakk> inv l; inv r \<rbrakk> \<Longrightarrow> inv (join2 l r)"
+by(simp add: join2_def inv_join split_min_set split_min_inv split: prod.split)
+
+
+subsection "\<open>split\<close>"
+
+fun split :: "('a,'b)tree \<Rightarrow> 'a \<Rightarrow> ('a,'b)tree \<times> bool \<times> ('a,'b)tree" where
+"split Leaf k = (Leaf, False, Leaf)" |
+"split (Node _ l a r) k =
+  (if k < a then let (l1,b,l2) = split l k in (l1, b, join l2 a r) else
+   if a < k then let (r1,b,r2) = split r k in (join l a r1, b, r2)
+   else (l, True, r))"
+
+lemma split: "split t k = (l,kin,r) \<Longrightarrow> bst t \<Longrightarrow>
+  set_tree l = {x \<in> set_tree t. x < k} \<and> set_tree r = {x \<in> set_tree t. k < x}
+  \<and> (kin = (k \<in> set_tree t)) \<and> bst l \<and> bst r"
+proof(induction t arbitrary: l kin r)
+  case Leaf thus ?case by simp
+next
+  case Node thus ?case by(force split!: prod.splits if_splits intro!: bst_join)
+qed
+
+lemma split_inv: "split t k = (l,kin,r) \<Longrightarrow> inv t \<Longrightarrow> inv l \<and> inv r"
+proof(induction t arbitrary: l kin r)
+  case Leaf thus ?case by simp
+next
+  case Node
+  thus ?case by(force simp: inv_join split!: prod.splits if_splits dest!: inv_Node)
+qed
+
+declare split.simps[simp del]
+
+
+subsection "\<open>insert\<close>"
+
+definition insert :: "'a \<Rightarrow> ('a,'b) tree \<Rightarrow> ('a,'b) tree" where
+"insert k t = (let (l,_,r) = split t k in join l k r)"
+
+lemma set_tree_insert: "bst t \<Longrightarrow> set_tree (insert x t) = Set.insert x (set_tree t)"
+by(auto simp add: insert_def split split: prod.split)
+
+lemma bst_insert: "bst t \<Longrightarrow> bst (insert x t)"
+by(auto simp add: insert_def bst_join dest: split split: prod.split)
+
+lemma inv_insert: "inv t \<Longrightarrow> inv (insert x t)"
+by(force simp: insert_def inv_join dest: split_inv split: prod.split)
+
+
+subsection "\<open>delete\<close>"
+
+definition delete :: "'a \<Rightarrow> ('a,'b) tree \<Rightarrow> ('a,'b) tree" where
+"delete k t = (let (l,_,r) = split t k in join2 l r)"
+
+lemma set_tree_delete: "bst t \<Longrightarrow> set_tree (delete k t) = set_tree t - {k}"
+by(auto simp: delete_def split split: prod.split)
+
+lemma bst_delete: "bst t \<Longrightarrow> bst (delete x t)"
+by(force simp add: delete_def intro: bst_join2 dest: split split: prod.split)
+
+lemma inv_delete: "inv t \<Longrightarrow> inv (delete x t)"
+by(force simp: delete_def inv_join2 dest: split_inv split: prod.split)
+
+
+subsection "\<open>union\<close>"
+
+fun union :: "('a,'b)tree \<Rightarrow> ('a,'b)tree \<Rightarrow> ('a,'b)tree" where
+"union t1 t2 =
+  (if t1 = Leaf then t2 else
+   if t2 = Leaf then t1 else
+   case t1 of Node _ l1 k r1 \<Rightarrow>
+   let (l2,_ ,r2) = split t2 k;
+       l' = union l1 l2; r' = union r1 r2
+   in join l' k r')"
+
+declare union.simps [simp del]
+
+lemma set_tree_union: "bst t2 \<Longrightarrow> set_tree (union t1 t2) = set_tree t1 \<union> set_tree t2"
+proof(induction t1 t2 rule: union.induct)
+  case (1 t1 t2)
+  then show ?case
+    by (auto simp: union.simps[of t1 t2] split split: tree.split prod.split)
+qed
+
+lemma bst_union: "\<lbrakk> bst t1; bst t2 \<rbrakk> \<Longrightarrow> bst (union t1 t2)"
+proof(induction t1 t2 rule: union.induct)
+  case (1 t1 t2)
+  thus ?case
+    by(fastforce simp: union.simps[of t1 t2] set_tree_union split intro!: bst_join 
+        split: tree.split prod.split)
+qed
+
+lemma inv_union: "\<lbrakk> inv t1; inv t2 \<rbrakk> \<Longrightarrow> inv (union t1 t2)"
+proof(induction t1 t2 rule: union.induct)
+  case (1 t1 t2)
+  thus ?case
+    by(auto simp:union.simps[of t1 t2] inv_join split_inv
+        split!: tree.split prod.split dest: inv_Node)
+qed
+
+subsection "\<open>inter\<close>"
+
+fun inter :: "('a,'b)tree \<Rightarrow> ('a,'b)tree \<Rightarrow> ('a,'b)tree" where
+"inter t1 t2 =
+  (if t1 = Leaf then Leaf else
+   if t2 = Leaf then Leaf else
+   case t1 of Node _ l1 k r1 \<Rightarrow>
+   let (l2,kin,r2) = split t2 k;
+       l' = inter l1 l2; r' = inter r1 r2
+   in if kin then join l' k r' else join2 l' r')"
+
+declare inter.simps [simp del]
+
+lemma set_tree_inter:
+  "\<lbrakk> bst t1; bst t2 \<rbrakk> \<Longrightarrow> set_tree (inter t1 t2) = set_tree t1 \<inter> set_tree t2"
+proof(induction t1 t2 rule: inter.induct)
+  case (1 t1 t2)
+  show ?case
+  proof (cases t1)
+    case Leaf thus ?thesis by (simp add: inter.simps)
+  next
+    case [simp]: (Node _ l1 k r1)
+    show ?thesis
+    proof (cases "t2 = Leaf")
+      case True thus ?thesis by (simp add: inter.simps)
+    next
+      case False
+      let ?L1 = "set_tree l1" let ?R1 = "set_tree r1"
+      have *: "k \<notin> ?L1 \<union> ?R1" using \<open>bst t1\<close> by (fastforce)
+      obtain l2 kin r2 where sp: "split t2 k = (l2,kin,r2)" using prod_cases3 by blast
+      let ?L2 = "set_tree l2" let ?R2 = "set_tree r2" let ?K = "if kin then {k} else {}"
+      have t2: "set_tree t2 = ?L2 \<union> ?R2 \<union> ?K" and
+           **: "?L2 \<inter> ?R2 = {}" "k \<notin> ?L2 \<union> ?R2" "?L1 \<inter> ?R2 = {}" "?L2 \<inter> ?R1 = {}"
+        using split[OF sp] \<open>bst t1\<close> \<open>bst t2\<close> by (force, force, force, force, force)
+      have IHl: "set_tree (inter l1 l2) = set_tree l1 \<inter> set_tree l2"
+        using "1.IH"(1)[OF _ False _ sp[symmetric]] "1.prems"(1,2) split[OF sp] by simp
+      have IHr: "set_tree (inter r1 r2) = set_tree r1 \<inter> set_tree r2"
+        using "1.IH"(2)[OF _ False _ sp[symmetric]] "1.prems"(1,2) split[OF sp] by simp
+      have "set_tree t1 \<inter> set_tree t2 = (?L1 \<union> ?R1 \<union> {k}) \<inter> (?L2 \<union> ?R2 \<union> ?K)"
+        by(simp add: t2)
+      also have "\<dots> = (?L1 \<inter> ?L2) \<union> (?R1 \<inter> ?R2) \<union> ?K"
+        using * ** by auto
+      also have "\<dots> = set_tree (inter t1 t2)"
+      using IHl IHr sp inter.simps[of t1 t2] False by(simp)
+      finally show ?thesis by simp
+    qed
+  qed
+qed
+
+lemma bst_inter: "\<lbrakk> bst t1; bst t2 \<rbrakk> \<Longrightarrow> bst (inter t1 t2)"
+proof(induction t1 t2 rule: inter.induct)
+  case (1 t1 t2)
+  thus ?case
+    by(fastforce simp: inter.simps[of t1 t2] set_tree_inter split Let_def
+        intro!: bst_join bst_join2 split: tree.split prod.split)
+qed
+
+lemma inv_inter: "\<lbrakk> inv t1; inv t2 \<rbrakk> \<Longrightarrow> inv (inter t1 t2)"
+proof(induction t1 t2 rule: inter.induct)
+  case (1 t1 t2)
+  thus ?case
+    by(auto simp: inter.simps[of t1 t2] inv_join inv_join2 split_inv Let_def
+        split!: tree.split prod.split dest: inv_Node)
+qed
+
+subsection "\<open>diff\<close>"
+
+fun diff :: "('a,'b)tree \<Rightarrow> ('a,'b)tree \<Rightarrow> ('a,'b)tree" where
+"diff t1 t2 =
+  (if t1 = Leaf then Leaf else
+   if t2 = Leaf then t1 else
+   case t2 of Node _ l2 k r2 \<Rightarrow>
+   let (l1,_,r1) = split t1 k;
+       l' = diff l1 l2; r' = diff r1 r2
+   in join2 l' r')"
+
+declare diff.simps [simp del]
+
+lemma set_tree_diff:
+  "\<lbrakk> bst t1; bst t2 \<rbrakk> \<Longrightarrow> set_tree (diff t1 t2) = set_tree t1 - set_tree t2"
+proof(induction t1 t2 rule: diff.induct)
+  case (1 t1 t2)
+  show ?case
+  proof (cases t2)
+    case Leaf thus ?thesis by (simp add: diff.simps)
+  next
+    case [simp]: (Node _ l2 k r2)
+    show ?thesis
+    proof (cases "t1 = Leaf")
+      case True thus ?thesis by (simp add: diff.simps)
+    next
+      case False
+      let ?L2 = "set_tree l2" let ?R2 = "set_tree r2"
+      obtain l1 kin r1 where sp: "split t1 k = (l1,kin,r1)" using prod_cases3 by blast
+      let ?L1 = "set_tree l1" let ?R1 = "set_tree r1" let ?K = "if kin then {k} else {}"
+      have t1: "set_tree t1 = ?L1 \<union> ?R1 \<union> ?K" and
+           **: "k \<notin> ?L1 \<union> ?R1" "?L1 \<inter> ?R2 = {}" "?L2 \<inter> ?R1 = {}"
+        using split[OF sp] \<open>bst t1\<close> \<open>bst t2\<close> by (force, force, force, force)
+      have IHl: "set_tree (diff l1 l2) = set_tree l1 - set_tree l2"
+        using "1.IH"(1)[OF False _ _ sp[symmetric]] "1.prems"(1,2) split[OF sp] by simp
+      have IHr: "set_tree (diff r1 r2) = set_tree r1 - set_tree r2"
+        using "1.IH"(2)[OF False _ _ sp[symmetric]] "1.prems"(1,2) split[OF sp] by simp
+      have "set_tree t1 - set_tree t2 = (?L1 \<union> ?R1) - (?L2 \<union> ?R2  \<union> {k})"
+        by(simp add: t1)
+      also have "\<dots> = (?L1 - ?L2) \<union> (?R1 - ?R2)"
+        using ** by auto
+      also have "\<dots> = set_tree (diff t1 t2)"
+      using IHl IHr sp diff.simps[of t1 t2] False by(simp)
+      finally show ?thesis by simp
+    qed
+  qed
+qed
+
+lemma bst_diff: "\<lbrakk> bst t1; bst t2 \<rbrakk> \<Longrightarrow> bst (diff t1 t2)"
+proof(induction t1 t2 rule: diff.induct)
+  case (1 t1 t2)
+  thus ?case
+    by(fastforce simp: diff.simps[of t1 t2] set_tree_diff split Let_def
+        intro!: bst_join bst_join2 split: tree.split prod.split)
+qed
+
+lemma inv_diff: "\<lbrakk> inv t1; inv t2 \<rbrakk> \<Longrightarrow> inv (diff t1 t2)"
+proof(induction t1 t2 rule: diff.induct)
+  case (1 t1 t2)
+  thus ?case
+    by(auto simp: diff.simps[of t1 t2] inv_join inv_join2 split_inv Let_def
+        split!: tree.split prod.split dest: inv_Node)
+qed
+
+text \<open>Locale @{locale Set2_Join} implements locale @{locale Set2}:\<close>
+
+sublocale Set2
+where empty = Leaf and insert = insert and delete = delete and isin = isin
+and union = union and inter = inter and diff = diff
+and set = set_tree and invar = "\<lambda>t. inv t \<and> bst t"
+proof (standard, goal_cases)
+  case 1 show ?case by (simp)
+next
+  case 2 thus ?case by(simp add: isin_set_tree)
+next
+  case 3 thus ?case by (simp add: set_tree_insert)
+next
+  case 4 thus ?case by (simp add: set_tree_delete)
+next
+  case 5 thus ?case by (simp add: inv_Leaf)
+next
+  case 6 thus ?case by (simp add: bst_insert inv_insert)
+next
+  case 7 thus ?case by (simp add: bst_delete inv_delete)
+next
+  case 8 thus ?case by(simp add: set_tree_union)
+next
+  case 9 thus ?case by(simp add: set_tree_inter)
+next
+  case 10 thus ?case by(simp add: set_tree_diff)
+next
+  case 11 thus ?case by (simp add: bst_union inv_union)
+next
+  case 12 thus ?case by (simp add: bst_inter inv_inter)
+next
+  case 13 thus ?case by (simp add: bst_diff inv_diff)
+qed
+
+end
+
+interpretation unbal: Set2_Join
+where join = "\<lambda>l x r. Node () l x r" and inv = "\<lambda>t. True"
+proof (standard, goal_cases)
+  case 1 show ?case by simp
+next
+  case 2 thus ?case by simp
+next
+  case 3 thus ?case by simp
+next
+  case 4 thus ?case by simp
+next
+  case 5 thus ?case by simp
+qed
+
+end
\ No newline at end of file