src/HOL/HOLCF/Adm.thy
changeset 40774 0437dbc127b3
parent 40623 dafba3a1dc5b
child 41182 717404c7d59a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HOLCF/Adm.thy	Sat Nov 27 16:08:10 2010 -0800
@@ -0,0 +1,193 @@
+(*  Title:      HOLCF/Adm.thy
+    Author:     Franz Regensburger and Brian Huffman
+*)
+
+header {* Admissibility and compactness *}
+
+theory Adm
+imports Cont
+begin
+
+default_sort cpo
+
+subsection {* Definitions *}
+
+definition
+  adm :: "('a::cpo \<Rightarrow> bool) \<Rightarrow> bool" where
+  "adm P = (\<forall>Y. chain Y \<longrightarrow> (\<forall>i. P (Y i)) \<longrightarrow> P (\<Squnion>i. Y i))"
+
+lemma admI:
+   "(\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)) \<Longrightarrow> adm P"
+unfolding adm_def by fast
+
+lemma admD: "\<lbrakk>adm P; chain Y; \<And>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)"
+unfolding adm_def by fast
+
+lemma admD2: "\<lbrakk>adm (\<lambda>x. \<not> P x); chain Y; P (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. P (Y i)"
+unfolding adm_def by fast
+
+lemma triv_admI: "\<forall>x. P x \<Longrightarrow> adm P"
+by (rule admI, erule spec)
+
+subsection {* Admissibility on chain-finite types *}
+
+text {* For chain-finite (easy) types every formula is admissible. *}
+
+lemma adm_chfin [simp]: "adm (P::'a::chfin \<Rightarrow> bool)"
+by (rule admI, frule chfin, auto simp add: maxinch_is_thelub)
+
+subsection {* Admissibility of special formulae and propagation *}
+
+lemma adm_const [simp]: "adm (\<lambda>x. t)"
+by (rule admI, simp)
+
+lemma adm_conj [simp]:
+  "\<lbrakk>adm (\<lambda>x. P x); adm (\<lambda>x. Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<and> Q x)"
+by (fast intro: admI elim: admD)
+
+lemma adm_all [simp]:
+  "(\<And>y. adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y. P x y)"
+by (fast intro: admI elim: admD)
+
+lemma adm_ball [simp]:
+  "(\<And>y. y \<in> A \<Longrightarrow> adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y\<in>A. P x y)"
+by (fast intro: admI elim: admD)
+
+text {* Admissibility for disjunction is hard to prove. It requires 2 lemmas. *}
+
+lemma adm_disj_lemma1:
+  assumes adm: "adm P"
+  assumes chain: "chain Y"
+  assumes P: "\<forall>i. \<exists>j\<ge>i. P (Y j)"
+  shows "P (\<Squnion>i. Y i)"
+proof -
+  def f \<equiv> "\<lambda>i. LEAST j. i \<le> j \<and> P (Y j)"
+  have chain': "chain (\<lambda>i. Y (f i))"
+    unfolding f_def
+    apply (rule chainI)
+    apply (rule chain_mono [OF chain])
+    apply (rule Least_le)
+    apply (rule LeastI2_ex)
+    apply (simp_all add: P)
+    done
+  have f1: "\<And>i. i \<le> f i" and f2: "\<And>i. P (Y (f i))"
+    using LeastI_ex [OF P [rule_format]] by (simp_all add: f_def)
+  have lub_eq: "(\<Squnion>i. Y i) = (\<Squnion>i. Y (f i))"
+    apply (rule below_antisym)
+    apply (rule lub_mono [OF chain chain'])
+    apply (rule chain_mono [OF chain f1])
+    apply (rule lub_range_mono [OF _ chain chain'])
+    apply clarsimp
+    done
+  show "P (\<Squnion>i. Y i)"
+    unfolding lub_eq using adm chain' f2 by (rule admD)
+qed
+
+lemma adm_disj_lemma2:
+  "\<forall>n::nat. P n \<or> Q n \<Longrightarrow> (\<forall>i. \<exists>j\<ge>i. P j) \<or> (\<forall>i. \<exists>j\<ge>i. Q j)"
+apply (erule contrapos_pp)
+apply (clarsimp, rename_tac a b)
+apply (rule_tac x="max a b" in exI)
+apply simp
+done
+
+lemma adm_disj [simp]:
+  "\<lbrakk>adm (\<lambda>x. P x); adm (\<lambda>x. Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<or> Q x)"
+apply (rule admI)
+apply (erule adm_disj_lemma2 [THEN disjE])
+apply (erule (2) adm_disj_lemma1 [THEN disjI1])
+apply (erule (2) adm_disj_lemma1 [THEN disjI2])
+done
+
+lemma adm_imp [simp]:
+  "\<lbrakk>adm (\<lambda>x. \<not> P x); adm (\<lambda>x. Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<longrightarrow> Q x)"
+by (subst imp_conv_disj, rule adm_disj)
+
+lemma adm_iff [simp]:
+  "\<lbrakk>adm (\<lambda>x. P x \<longrightarrow> Q x); adm (\<lambda>x. Q x \<longrightarrow> P x)\<rbrakk>  
+    \<Longrightarrow> adm (\<lambda>x. P x = Q x)"
+by (subst iff_conv_conj_imp, rule adm_conj)
+
+text {* admissibility and continuity *}
+
+lemma adm_below [simp]:
+  "\<lbrakk>cont (\<lambda>x. u x); cont (\<lambda>x. v x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x \<sqsubseteq> v x)"
+by (simp add: adm_def cont2contlubE lub_mono ch2ch_cont)
+
+lemma adm_eq [simp]:
+  "\<lbrakk>cont (\<lambda>x. u x); cont (\<lambda>x. v x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x = v x)"
+by (simp add: po_eq_conv)
+
+lemma adm_subst: "\<lbrakk>cont (\<lambda>x. t x); adm P\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P (t x))"
+by (simp add: adm_def cont2contlubE ch2ch_cont)
+
+lemma adm_not_below [simp]: "cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. \<not> t x \<sqsubseteq> u)"
+by (rule admI, simp add: cont2contlubE ch2ch_cont lub_below_iff)
+
+subsection {* Compactness *}
+
+definition
+  compact :: "'a::cpo \<Rightarrow> bool" where
+  "compact k = adm (\<lambda>x. \<not> k \<sqsubseteq> x)"
+
+lemma compactI: "adm (\<lambda>x. \<not> k \<sqsubseteq> x) \<Longrightarrow> compact k"
+unfolding compact_def .
+
+lemma compactD: "compact k \<Longrightarrow> adm (\<lambda>x. \<not> k \<sqsubseteq> x)"
+unfolding compact_def .
+
+lemma compactI2:
+  "(\<And>Y. \<lbrakk>chain Y; x \<sqsubseteq> (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i) \<Longrightarrow> compact x"
+unfolding compact_def adm_def by fast
+
+lemma compactD2:
+  "\<lbrakk>compact x; chain Y; x \<sqsubseteq> (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i"
+unfolding compact_def adm_def by fast
+
+lemma compact_below_lub_iff:
+  "\<lbrakk>compact x; chain Y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. Y i) \<longleftrightarrow> (\<exists>i. x \<sqsubseteq> Y i)"
+by (fast intro: compactD2 elim: below_lub)
+
+lemma compact_chfin [simp]: "compact (x::'a::chfin)"
+by (rule compactI [OF adm_chfin])
+
+lemma compact_imp_max_in_chain:
+  "\<lbrakk>chain Y; compact (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. max_in_chain i Y"
+apply (drule (1) compactD2, simp)
+apply (erule exE, rule_tac x=i in exI)
+apply (rule max_in_chainI)
+apply (rule below_antisym)
+apply (erule (1) chain_mono)
+apply (erule (1) below_trans [OF is_ub_thelub])
+done
+
+text {* admissibility and compactness *}
+
+lemma adm_compact_not_below [simp]:
+  "\<lbrakk>compact k; cont (\<lambda>x. t x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. \<not> k \<sqsubseteq> t x)"
+unfolding compact_def by (rule adm_subst)
+
+lemma adm_neq_compact [simp]:
+  "\<lbrakk>compact k; cont (\<lambda>x. t x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. t x \<noteq> k)"
+by (simp add: po_eq_conv)
+
+lemma adm_compact_neq [simp]:
+  "\<lbrakk>compact k; cont (\<lambda>x. t x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. k \<noteq> t x)"
+by (simp add: po_eq_conv)
+
+lemma compact_UU [simp, intro]: "compact \<bottom>"
+by (rule compactI, simp)
+
+text {* Any upward-closed predicate is admissible. *}
+
+lemma adm_upward:
+  assumes P: "\<And>x y. \<lbrakk>P x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> P y"
+  shows "adm P"
+by (rule admI, drule spec, erule P, erule is_ub_thelub)
+
+lemmas adm_lemmas =
+  adm_const adm_conj adm_all adm_ball adm_disj adm_imp adm_iff
+  adm_below adm_eq adm_not_below
+  adm_compact_not_below adm_compact_neq adm_neq_compact
+
+end