src/HOL/HOLCF/Cfun.thy
changeset 40774 0437dbc127b3
parent 40772 c8b52f9e1680
child 40794 d28d41ee4cef
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HOLCF/Cfun.thy	Sat Nov 27 16:08:10 2010 -0800
@@ -0,0 +1,543 @@
+(*  Title:      HOLCF/Cfun.thy
+    Author:     Franz Regensburger
+    Author:     Brian Huffman
+*)
+
+header {* The type of continuous functions *}
+
+theory Cfun
+imports Cpodef Fun_Cpo Product_Cpo
+begin
+
+default_sort cpo
+
+subsection {* Definition of continuous function type *}
+
+cpodef ('a, 'b) cfun (infixr "->" 0) = "{f::'a => 'b. cont f}"
+by (auto intro: cont_const adm_cont)
+
+type_notation (xsymbols)
+  cfun  ("(_ \<rightarrow>/ _)" [1, 0] 0)
+
+notation
+  Rep_cfun  ("(_$/_)" [999,1000] 999)
+
+notation (xsymbols)
+  Rep_cfun  ("(_\<cdot>/_)" [999,1000] 999)
+
+notation (HTML output)
+  Rep_cfun  ("(_\<cdot>/_)" [999,1000] 999)
+
+subsection {* Syntax for continuous lambda abstraction *}
+
+syntax "_cabs" :: "'a"
+
+parse_translation {*
+(* rewrite (_cabs x t) => (Abs_cfun (%x. t)) *)
+  [mk_binder_tr (@{syntax_const "_cabs"}, @{const_syntax Abs_cfun})];
+*}
+
+text {* To avoid eta-contraction of body: *}
+typed_print_translation {*
+  let
+    fun cabs_tr' _ _ [Abs abs] = let
+          val (x,t) = atomic_abs_tr' abs
+        in Syntax.const @{syntax_const "_cabs"} $ x $ t end
+
+      | cabs_tr' _ T [t] = let
+          val xT = domain_type (domain_type T);
+          val abs' = ("x",xT,(incr_boundvars 1 t)$Bound 0);
+          val (x,t') = atomic_abs_tr' abs';
+        in Syntax.const @{syntax_const "_cabs"} $ x $ t' end;
+
+  in [(@{const_syntax Abs_cfun}, cabs_tr')] end;
+*}
+
+text {* Syntax for nested abstractions *}
+
+syntax
+  "_Lambda" :: "[cargs, 'a] \<Rightarrow> logic"  ("(3LAM _./ _)" [1000, 10] 10)
+
+syntax (xsymbols)
+  "_Lambda" :: "[cargs, 'a] \<Rightarrow> logic" ("(3\<Lambda> _./ _)" [1000, 10] 10)
+
+parse_ast_translation {*
+(* rewrite (LAM x y z. t) => (_cabs x (_cabs y (_cabs z t))) *)
+(* cf. Syntax.lambda_ast_tr from src/Pure/Syntax/syn_trans.ML *)
+  let
+    fun Lambda_ast_tr [pats, body] =
+          Syntax.fold_ast_p @{syntax_const "_cabs"}
+            (Syntax.unfold_ast @{syntax_const "_cargs"} pats, body)
+      | Lambda_ast_tr asts = raise Syntax.AST ("Lambda_ast_tr", asts);
+  in [(@{syntax_const "_Lambda"}, Lambda_ast_tr)] end;
+*}
+
+print_ast_translation {*
+(* rewrite (_cabs x (_cabs y (_cabs z t))) => (LAM x y z. t) *)
+(* cf. Syntax.abs_ast_tr' from src/Pure/Syntax/syn_trans.ML *)
+  let
+    fun cabs_ast_tr' asts =
+      (case Syntax.unfold_ast_p @{syntax_const "_cabs"}
+          (Syntax.Appl (Syntax.Constant @{syntax_const "_cabs"} :: asts)) of
+        ([], _) => raise Syntax.AST ("cabs_ast_tr'", asts)
+      | (xs, body) => Syntax.Appl
+          [Syntax.Constant @{syntax_const "_Lambda"},
+           Syntax.fold_ast @{syntax_const "_cargs"} xs, body]);
+  in [(@{syntax_const "_cabs"}, cabs_ast_tr')] end
+*}
+
+text {* Dummy patterns for continuous abstraction *}
+translations
+  "\<Lambda> _. t" => "CONST Abs_cfun (\<lambda> _. t)"
+
+subsection {* Continuous function space is pointed *}
+
+lemma UU_cfun: "\<bottom> \<in> cfun"
+by (simp add: cfun_def inst_fun_pcpo)
+
+instance cfun :: (cpo, discrete_cpo) discrete_cpo
+by intro_classes (simp add: below_cfun_def Rep_cfun_inject)
+
+instance cfun :: (cpo, pcpo) pcpo
+by (rule typedef_pcpo [OF type_definition_cfun below_cfun_def UU_cfun])
+
+lemmas Rep_cfun_strict =
+  typedef_Rep_strict [OF type_definition_cfun below_cfun_def UU_cfun]
+
+lemmas Abs_cfun_strict =
+  typedef_Abs_strict [OF type_definition_cfun below_cfun_def UU_cfun]
+
+text {* function application is strict in its first argument *}
+
+lemma Rep_cfun_strict1 [simp]: "\<bottom>\<cdot>x = \<bottom>"
+by (simp add: Rep_cfun_strict)
+
+lemma LAM_strict [simp]: "(\<Lambda> x. \<bottom>) = \<bottom>"
+by (simp add: inst_fun_pcpo [symmetric] Abs_cfun_strict)
+
+text {* for compatibility with old HOLCF-Version *}
+lemma inst_cfun_pcpo: "\<bottom> = (\<Lambda> x. \<bottom>)"
+by simp
+
+subsection {* Basic properties of continuous functions *}
+
+text {* Beta-equality for continuous functions *}
+
+lemma Abs_cfun_inverse2: "cont f \<Longrightarrow> Rep_cfun (Abs_cfun f) = f"
+by (simp add: Abs_cfun_inverse cfun_def)
+
+lemma beta_cfun: "cont f \<Longrightarrow> (\<Lambda> x. f x)\<cdot>u = f u"
+by (simp add: Abs_cfun_inverse2)
+
+text {* Beta-reduction simproc *}
+
+text {*
+  Given the term @{term "(\<Lambda> x. f x)\<cdot>y"}, the procedure tries to
+  construct the theorem @{term "(\<Lambda> x. f x)\<cdot>y == f y"}.  If this
+  theorem cannot be completely solved by the cont2cont rules, then
+  the procedure returns the ordinary conditional @{text beta_cfun}
+  rule.
+
+  The simproc does not solve any more goals that would be solved by
+  using @{text beta_cfun} as a simp rule.  The advantage of the
+  simproc is that it can avoid deeply-nested calls to the simplifier
+  that would otherwise be caused by large continuity side conditions.
+*}
+
+simproc_setup beta_cfun_proc ("Abs_cfun f\<cdot>x") = {*
+  fn phi => fn ss => fn ct =>
+    let
+      val dest = Thm.dest_comb;
+      val (f, x) = (apfst (snd o dest o snd o dest) o dest) ct;
+      val [T, U] = Thm.dest_ctyp (ctyp_of_term f);
+      val tr = instantiate' [SOME T, SOME U] [SOME f, SOME x]
+          (mk_meta_eq @{thm beta_cfun});
+      val rules = Cont2ContData.get (Simplifier.the_context ss);
+      val tac = SOLVED' (REPEAT_ALL_NEW (match_tac rules));
+    in SOME (perhaps (SINGLE (tac 1)) tr) end
+*}
+
+text {* Eta-equality for continuous functions *}
+
+lemma eta_cfun: "(\<Lambda> x. f\<cdot>x) = f"
+by (rule Rep_cfun_inverse)
+
+text {* Extensionality for continuous functions *}
+
+lemma cfun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f\<cdot>x = g\<cdot>x)"
+by (simp add: Rep_cfun_inject [symmetric] fun_eq_iff)
+
+lemma cfun_eqI: "(\<And>x. f\<cdot>x = g\<cdot>x) \<Longrightarrow> f = g"
+by (simp add: cfun_eq_iff)
+
+text {* Extensionality wrt. ordering for continuous functions *}
+
+lemma cfun_below_iff: "f \<sqsubseteq> g \<longleftrightarrow> (\<forall>x. f\<cdot>x \<sqsubseteq> g\<cdot>x)" 
+by (simp add: below_cfun_def fun_below_iff)
+
+lemma cfun_belowI: "(\<And>x. f\<cdot>x \<sqsubseteq> g\<cdot>x) \<Longrightarrow> f \<sqsubseteq> g"
+by (simp add: cfun_below_iff)
+
+text {* Congruence for continuous function application *}
+
+lemma cfun_cong: "\<lbrakk>f = g; x = y\<rbrakk> \<Longrightarrow> f\<cdot>x = g\<cdot>y"
+by simp
+
+lemma cfun_fun_cong: "f = g \<Longrightarrow> f\<cdot>x = g\<cdot>x"
+by simp
+
+lemma cfun_arg_cong: "x = y \<Longrightarrow> f\<cdot>x = f\<cdot>y"
+by simp
+
+subsection {* Continuity of application *}
+
+lemma cont_Rep_cfun1: "cont (\<lambda>f. f\<cdot>x)"
+by (rule cont_Rep_cfun [THEN cont2cont_fun])
+
+lemma cont_Rep_cfun2: "cont (\<lambda>x. f\<cdot>x)"
+apply (cut_tac x=f in Rep_cfun)
+apply (simp add: cfun_def)
+done
+
+lemmas monofun_Rep_cfun = cont_Rep_cfun [THEN cont2mono]
+
+lemmas monofun_Rep_cfun1 = cont_Rep_cfun1 [THEN cont2mono, standard]
+lemmas monofun_Rep_cfun2 = cont_Rep_cfun2 [THEN cont2mono, standard]
+
+text {* contlub, cont properties of @{term Rep_cfun} in each argument *}
+
+lemma contlub_cfun_arg: "chain Y \<Longrightarrow> f\<cdot>(\<Squnion>i. Y i) = (\<Squnion>i. f\<cdot>(Y i))"
+by (rule cont_Rep_cfun2 [THEN cont2contlubE])
+
+lemma contlub_cfun_fun: "chain F \<Longrightarrow> (\<Squnion>i. F i)\<cdot>x = (\<Squnion>i. F i\<cdot>x)"
+by (rule cont_Rep_cfun1 [THEN cont2contlubE])
+
+text {* monotonicity of application *}
+
+lemma monofun_cfun_fun: "f \<sqsubseteq> g \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>x"
+by (simp add: cfun_below_iff)
+
+lemma monofun_cfun_arg: "x \<sqsubseteq> y \<Longrightarrow> f\<cdot>x \<sqsubseteq> f\<cdot>y"
+by (rule monofun_Rep_cfun2 [THEN monofunE])
+
+lemma monofun_cfun: "\<lbrakk>f \<sqsubseteq> g; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>y"
+by (rule below_trans [OF monofun_cfun_fun monofun_cfun_arg])
+
+text {* ch2ch - rules for the type @{typ "'a -> 'b"} *}
+
+lemma chain_monofun: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
+by (erule monofun_Rep_cfun2 [THEN ch2ch_monofun])
+
+lemma ch2ch_Rep_cfunR: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
+by (rule monofun_Rep_cfun2 [THEN ch2ch_monofun])
+
+lemma ch2ch_Rep_cfunL: "chain F \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>x)"
+by (rule monofun_Rep_cfun1 [THEN ch2ch_monofun])
+
+lemma ch2ch_Rep_cfun [simp]:
+  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>(Y i))"
+by (simp add: chain_def monofun_cfun)
+
+lemma ch2ch_LAM [simp]:
+  "\<lbrakk>\<And>x. chain (\<lambda>i. S i x); \<And>i. cont (\<lambda>x. S i x)\<rbrakk> \<Longrightarrow> chain (\<lambda>i. \<Lambda> x. S i x)"
+by (simp add: chain_def cfun_below_iff)
+
+text {* contlub, cont properties of @{term Rep_cfun} in both arguments *}
+
+lemma contlub_cfun: 
+  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i) = (\<Squnion>i. F i\<cdot>(Y i))"
+by (simp add: contlub_cfun_fun contlub_cfun_arg diag_lub)
+
+lemma cont_cfun: 
+  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> range (\<lambda>i. F i\<cdot>(Y i)) <<| (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i)"
+apply (rule thelubE)
+apply (simp only: ch2ch_Rep_cfun)
+apply (simp only: contlub_cfun)
+done
+
+lemma contlub_LAM:
+  "\<lbrakk>\<And>x. chain (\<lambda>i. F i x); \<And>i. cont (\<lambda>x. F i x)\<rbrakk>
+    \<Longrightarrow> (\<Lambda> x. \<Squnion>i. F i x) = (\<Squnion>i. \<Lambda> x. F i x)"
+apply (simp add: lub_cfun)
+apply (simp add: Abs_cfun_inverse2)
+apply (simp add: thelub_fun ch2ch_lambda)
+done
+
+lemmas lub_distribs = 
+  contlub_cfun [symmetric]
+  contlub_LAM [symmetric]
+
+text {* strictness *}
+
+lemma strictI: "f\<cdot>x = \<bottom> \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
+apply (rule UU_I)
+apply (erule subst)
+apply (rule minimal [THEN monofun_cfun_arg])
+done
+
+text {* type @{typ "'a -> 'b"} is chain complete *}
+
+lemma lub_cfun: "chain F \<Longrightarrow> range F <<| (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
+by (simp only: contlub_cfun_fun [symmetric] eta_cfun thelubE)
+
+lemma thelub_cfun: "chain F \<Longrightarrow> (\<Squnion>i. F i) = (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
+by (rule lub_cfun [THEN lub_eqI])
+
+subsection {* Continuity simplification procedure *}
+
+text {* cont2cont lemma for @{term Rep_cfun} *}
+
+lemma cont2cont_APP [simp, cont2cont]:
+  assumes f: "cont (\<lambda>x. f x)"
+  assumes t: "cont (\<lambda>x. t x)"
+  shows "cont (\<lambda>x. (f x)\<cdot>(t x))"
+proof -
+  have 1: "\<And>y. cont (\<lambda>x. (f x)\<cdot>y)"
+    using cont_Rep_cfun1 f by (rule cont_compose)
+  show "cont (\<lambda>x. (f x)\<cdot>(t x))"
+    using t cont_Rep_cfun2 1 by (rule cont_apply)
+qed
+
+text {*
+  Two specific lemmas for the combination of LCF and HOL terms.
+  These lemmas are needed in theories that use types like @{typ "'a \<rightarrow> 'b \<Rightarrow> 'c"}.
+*}
+
+lemma cont_APP_app [simp]: "\<lbrakk>cont f; cont g\<rbrakk> \<Longrightarrow> cont (\<lambda>x. ((f x)\<cdot>(g x)) s)"
+by (rule cont2cont_APP [THEN cont2cont_fun])
+
+lemma cont_APP_app_app [simp]: "\<lbrakk>cont f; cont g\<rbrakk> \<Longrightarrow> cont (\<lambda>x. ((f x)\<cdot>(g x)) s t)"
+by (rule cont_APP_app [THEN cont2cont_fun])
+
+
+text {* cont2mono Lemma for @{term "%x. LAM y. c1(x)(y)"} *}
+
+lemma cont2mono_LAM:
+  "\<lbrakk>\<And>x. cont (\<lambda>y. f x y); \<And>y. monofun (\<lambda>x. f x y)\<rbrakk>
+    \<Longrightarrow> monofun (\<lambda>x. \<Lambda> y. f x y)"
+  unfolding monofun_def cfun_below_iff by simp
+
+text {* cont2cont Lemma for @{term "%x. LAM y. f x y"} *}
+
+text {*
+  Not suitable as a cont2cont rule, because on nested lambdas
+  it causes exponential blow-up in the number of subgoals.
+*}
+
+lemma cont2cont_LAM:
+  assumes f1: "\<And>x. cont (\<lambda>y. f x y)"
+  assumes f2: "\<And>y. cont (\<lambda>x. f x y)"
+  shows "cont (\<lambda>x. \<Lambda> y. f x y)"
+proof (rule cont_Abs_cfun)
+  fix x
+  from f1 show "f x \<in> cfun" by (simp add: cfun_def)
+  from f2 show "cont f" by (rule cont2cont_lambda)
+qed
+
+text {*
+  This version does work as a cont2cont rule, since it
+  has only a single subgoal.
+*}
+
+lemma cont2cont_LAM' [simp, cont2cont]:
+  fixes f :: "'a::cpo \<Rightarrow> 'b::cpo \<Rightarrow> 'c::cpo"
+  assumes f: "cont (\<lambda>p. f (fst p) (snd p))"
+  shows "cont (\<lambda>x. \<Lambda> y. f x y)"
+using assms by (simp add: cont2cont_LAM prod_cont_iff)
+
+lemma cont2cont_LAM_discrete [simp, cont2cont]:
+  "(\<And>y::'a::discrete_cpo. cont (\<lambda>x. f x y)) \<Longrightarrow> cont (\<lambda>x. \<Lambda> y. f x y)"
+by (simp add: cont2cont_LAM)
+
+subsection {* Miscellaneous *}
+
+text {* Monotonicity of @{term Abs_cfun} *}
+
+lemma monofun_LAM:
+  "\<lbrakk>cont f; cont g; \<And>x. f x \<sqsubseteq> g x\<rbrakk> \<Longrightarrow> (\<Lambda> x. f x) \<sqsubseteq> (\<Lambda> x. g x)"
+by (simp add: cfun_below_iff)
+
+text {* some lemmata for functions with flat/chfin domain/range types *}
+
+lemma chfin_Rep_cfunR: "chain (Y::nat => 'a::cpo->'b::chfin)  
+      ==> !s. ? n. (LUB i. Y i)$s = Y n$s"
+apply (rule allI)
+apply (subst contlub_cfun_fun)
+apply assumption
+apply (fast intro!: lub_eqI chfin lub_finch2 chfin2finch ch2ch_Rep_cfunL)
+done
+
+lemma adm_chfindom: "adm (\<lambda>(u::'a::cpo \<rightarrow> 'b::chfin). P(u\<cdot>s))"
+by (rule adm_subst, simp, rule adm_chfin)
+
+subsection {* Continuous injection-retraction pairs *}
+
+text {* Continuous retractions are strict. *}
+
+lemma retraction_strict:
+  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
+apply (rule UU_I)
+apply (drule_tac x="\<bottom>" in spec)
+apply (erule subst)
+apply (rule monofun_cfun_arg)
+apply (rule minimal)
+done
+
+lemma injection_eq:
+  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x = g\<cdot>y) = (x = y)"
+apply (rule iffI)
+apply (drule_tac f=f in cfun_arg_cong)
+apply simp
+apply simp
+done
+
+lemma injection_below:
+  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x \<sqsubseteq> g\<cdot>y) = (x \<sqsubseteq> y)"
+apply (rule iffI)
+apply (drule_tac f=f in monofun_cfun_arg)
+apply simp
+apply (erule monofun_cfun_arg)
+done
+
+lemma injection_defined_rev:
+  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; g\<cdot>z = \<bottom>\<rbrakk> \<Longrightarrow> z = \<bottom>"
+apply (drule_tac f=f in cfun_arg_cong)
+apply (simp add: retraction_strict)
+done
+
+lemma injection_defined:
+  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; z \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> g\<cdot>z \<noteq> \<bottom>"
+by (erule contrapos_nn, rule injection_defined_rev)
+
+text {* a result about functions with flat codomain *}
+
+lemma flat_eqI: "\<lbrakk>(x::'a::flat) \<sqsubseteq> y; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> x = y"
+by (drule ax_flat, simp)
+
+lemma flat_codom:
+  "f\<cdot>x = (c::'b::flat) \<Longrightarrow> f\<cdot>\<bottom> = \<bottom> \<or> (\<forall>z. f\<cdot>z = c)"
+apply (case_tac "f\<cdot>x = \<bottom>")
+apply (rule disjI1)
+apply (rule UU_I)
+apply (erule_tac t="\<bottom>" in subst)
+apply (rule minimal [THEN monofun_cfun_arg])
+apply clarify
+apply (rule_tac a = "f\<cdot>\<bottom>" in refl [THEN box_equals])
+apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
+apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
+done
+
+subsection {* Identity and composition *}
+
+definition
+  ID :: "'a \<rightarrow> 'a" where
+  "ID = (\<Lambda> x. x)"
+
+definition
+  cfcomp  :: "('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'c" where
+  oo_def: "cfcomp = (\<Lambda> f g x. f\<cdot>(g\<cdot>x))"
+
+abbreviation
+  cfcomp_syn :: "['b \<rightarrow> 'c, 'a \<rightarrow> 'b] \<Rightarrow> 'a \<rightarrow> 'c"  (infixr "oo" 100)  where
+  "f oo g == cfcomp\<cdot>f\<cdot>g"
+
+lemma ID1 [simp]: "ID\<cdot>x = x"
+by (simp add: ID_def)
+
+lemma cfcomp1: "(f oo g) = (\<Lambda> x. f\<cdot>(g\<cdot>x))"
+by (simp add: oo_def)
+
+lemma cfcomp2 [simp]: "(f oo g)\<cdot>x = f\<cdot>(g\<cdot>x)"
+by (simp add: cfcomp1)
+
+lemma cfcomp_LAM: "cont g \<Longrightarrow> f oo (\<Lambda> x. g x) = (\<Lambda> x. f\<cdot>(g x))"
+by (simp add: cfcomp1)
+
+lemma cfcomp_strict [simp]: "\<bottom> oo f = \<bottom>"
+by (simp add: cfun_eq_iff)
+
+text {*
+  Show that interpretation of (pcpo,@{text "_->_"}) is a category.
+  The class of objects is interpretation of syntactical class pcpo.
+  The class of arrows  between objects @{typ 'a} and @{typ 'b} is interpret. of @{typ "'a -> 'b"}.
+  The identity arrow is interpretation of @{term ID}.
+  The composition of f and g is interpretation of @{text "oo"}.
+*}
+
+lemma ID2 [simp]: "f oo ID = f"
+by (rule cfun_eqI, simp)
+
+lemma ID3 [simp]: "ID oo f = f"
+by (rule cfun_eqI, simp)
+
+lemma assoc_oo: "f oo (g oo h) = (f oo g) oo h"
+by (rule cfun_eqI, simp)
+
+subsection {* Strictified functions *}
+
+default_sort pcpo
+
+definition
+  seq :: "'a \<rightarrow> 'b \<rightarrow> 'b" where
+  "seq = (\<Lambda> x. if x = \<bottom> then \<bottom> else ID)"
+
+lemma cont_seq: "cont (\<lambda>x. if x = \<bottom> then \<bottom> else y)"
+unfolding cont_def is_lub_def is_ub_def ball_simps
+by (simp add: lub_eq_bottom_iff)
+
+lemma seq_conv_if: "seq\<cdot>x = (if x = \<bottom> then \<bottom> else ID)"
+unfolding seq_def by (simp add: cont_seq)
+
+lemma seq1 [simp]: "seq\<cdot>\<bottom> = \<bottom>"
+by (simp add: seq_conv_if)
+
+lemma seq2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> seq\<cdot>x = ID"
+by (simp add: seq_conv_if)
+
+lemma seq3 [simp]: "seq\<cdot>x\<cdot>\<bottom> = \<bottom>"
+by (simp add: seq_conv_if)
+
+definition
+  strictify  :: "('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'b" where
+  "strictify = (\<Lambda> f x. seq\<cdot>x\<cdot>(f\<cdot>x))"
+
+lemma strictify_conv_if: "strictify\<cdot>f\<cdot>x = (if x = \<bottom> then \<bottom> else f\<cdot>x)"
+unfolding strictify_def by simp
+
+lemma strictify1 [simp]: "strictify\<cdot>f\<cdot>\<bottom> = \<bottom>"
+by (simp add: strictify_conv_if)
+
+lemma strictify2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> strictify\<cdot>f\<cdot>x = f\<cdot>x"
+by (simp add: strictify_conv_if)
+
+subsection {* Continuity of let-bindings *}
+
+lemma cont2cont_Let:
+  assumes f: "cont (\<lambda>x. f x)"
+  assumes g1: "\<And>y. cont (\<lambda>x. g x y)"
+  assumes g2: "\<And>x. cont (\<lambda>y. g x y)"
+  shows "cont (\<lambda>x. let y = f x in g x y)"
+unfolding Let_def using f g2 g1 by (rule cont_apply)
+
+lemma cont2cont_Let' [simp, cont2cont]:
+  assumes f: "cont (\<lambda>x. f x)"
+  assumes g: "cont (\<lambda>p. g (fst p) (snd p))"
+  shows "cont (\<lambda>x. let y = f x in g x y)"
+using f
+proof (rule cont2cont_Let)
+  fix x show "cont (\<lambda>y. g x y)"
+    using g by (simp add: prod_cont_iff)
+next
+  fix y show "cont (\<lambda>x. g x y)"
+    using g by (simp add: prod_cont_iff)
+qed
+
+text {* The simple version (suggested by Joachim Breitner) is needed if
+  the type of the defined term is not a cpo. *}
+
+lemma cont2cont_Let_simple [simp, cont2cont]:
+  assumes "\<And>y. cont (\<lambda>x. g x y)"
+  shows "cont (\<lambda>x. let y = t in g x y)"
+unfolding Let_def using assms .
+
+end